Nejvíce citovaný článek - PubMed ID 37162189
Formation and three-dimensional architecture of Leishmania adhesion in the sand fly vector
BACKGROUND: Several new species of Leishmania have recently emerged in Europe, probably as the result of global changes and increased human migration from endemic areas. In this study, we tested whether two sand fly species, the Western Mediterranean Phlebotomus perniciosus and the Eastern Mediterranean P. tobbi, are competent vectors of L. donovani, L. major and L. martiniquensis. METHODOLOGY/PRINCIPAL FINDINGS: Sand flies were infected through the chick skin membrane using Leishmania species and strains of various geographical origins. Leishmania infections were evaluated by light microscopy and qPCR, and the representation of morphological forms was assessed from Giemsa-stained gut smears. Neither P. perniciosus nor P. tobbi supported the development of L. martiniquensis, but L. major and L. donovani in both species survived defecation of blood meal remnants, colonized the stomodeal valve and produced metacyclic stages. The results with L donovani have shown that infection rates in sand flies can be strain-specific; therefore, to determine vector competence or refractoriness, it is optimal to test at least two strains of Leishmania. CONCLUSIONS, SIGNIFICANCE: Both sand fly species tested are potential vectors of L. donovani and L. major in Mediterranean area. However, further studies will be needed to identify European vectors of L. martiniquensis and to test the ability of other European sand fly species to transmit L. major, L. donovani, L. tropica and L. infantum.
- MeSH
- hmyz - vektory * parazitologie fyziologie MeSH
- kur domácí parazitologie MeSH
- Leishmania * fyziologie klasifikace genetika MeSH
- leishmanióza přenos parazitologie MeSH
- lidé MeSH
- Phlebotomus * parazitologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Leishmania species, members of the kinetoplastid parasites, cause leishmaniasis, a neglected tropical disease, in millions of people worldwide. Leishmania has a complex life cycle with multiple developmental forms, as it cycles between a sand fly vector and a mammalian host; understanding their life cycle is critical to understanding disease spread. One of the key life cycle stages is the haptomonad form, which attaches to insect tissues through its flagellum. This adhesion, conserved across kinetoplastid parasites, is implicated in having an important function within their life cycles and hence in disease transmission. Here, we discover the kinetoplastid-insect adhesion proteins (KIAPs), which localise in the attached Leishmania flagellum. Deletion of these KIAPs impairs cell adhesion in vitro and prevents Leishmania from colonising the stomodeal valve in the sand fly, without affecting cell growth. Additionally, loss of parasite adhesion in the sand fly results in reduced physiological changes to the fly, with no observable damage of the stomodeal valve and reduced midgut swelling. These results provide important insights into a comprehensive understanding of the Leishmania life cycle, which will be critical for developing transmission-blocking strategies.
- MeSH
- buněčná adheze MeSH
- flagella * metabolismus MeSH
- hmyz - vektory parazitologie MeSH
- hmyzí proteiny metabolismus genetika MeSH
- interakce hostitele a parazita MeSH
- Leishmania * fyziologie genetika metabolismus MeSH
- leishmanióza parazitologie přenos MeSH
- protozoální proteiny metabolismus genetika MeSH
- Psychodidae * parazitologie MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hmyzí proteiny MeSH
- protozoální proteiny MeSH
The unicellular parasite Leishmania has a precisely defined cell architecture that is inherited by each subsequent generation, requiring a highly coordinated pattern of duplication and segregation of organelles and cytoskeletal structures. A framework of nuclear division and morphological changes is known from light microscopy, yet this has limited resolution and the intrinsic organisation of organelles within the cell body and their manner of duplication and inheritance is unknown. Using volume electron microscopy approaches, we have produced three-dimensional reconstructions of different promastigote cell cycle stages to give a spatial and quantitative overview of organelle positioning, division and inheritance. The first morphological indications seen in our dataset that a new cell cycle had begun were the assembly of a new flagellum, the duplication of the contractile vacuole and the increase in volume of the nucleus and kinetoplast. We showed that the progression of the cytokinesis furrow created a specific pattern of membrane indentations, while our analysis of sub-pellicular microtubule organisation indicated that there is likely a preferred site of new microtubule insertion. The daughter cells retained these indentations in their cell body for a period post-abscission. By comparing cultured and sand fly derived promastigotes, we found an increase in the number and overall volume of lipid droplets in the promastigotes from the sand fly, reflecting a change in their metabolism to ensure transmissibility to the mammalian host. Our insights into the cell cycle mechanics of Leishmania will support future molecular cell biology analyses of these parasites.
- MeSH
- buněčné dělení MeSH
- buněčný cyklus MeSH
- Leishmania mexicana * genetika MeSH
- Leishmania * MeSH
- paraziti * MeSH
- Psychodidae * parazitologie MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH