Nejvíce citovaný článek - PubMed ID 37956927
Pharmacological modulation of vascular ageing: A review from VascAgeNet
Hydrogen sulfide (H2S) is a gas neurotransmitter that is synthesized in various mammalian tissues including vascular tissues and regulates vascular tone. The aim of this study is to investigate whether the endogenous L-cysteine/H2S pathway is impaired due to aging and endothelial denudation in mouse isolated thoracic aorta. For this purpose, young (3-4 months) and old (23-25 months) mice were used in the experiments. The effects of aging and endothelium on endogenous and exogenous H2S-induced vasorelaxation were investigated by cumulative L-cysteine-(1 microM-10 mM) and NaHS-(1 microM-3 mM) induced vasorelaxations, respectively. The L-cysteine-induced relaxations were reduced in old mice aorta compared to the young mice. Also, vasorelaxant responses to L-cysteine (1 microM-10 mM) were reduced on aorta rings with denuded-endothelium of young and old mice. However, the relaxation responses to NaHS were not altered by age or endothelium denudation. The loss of staining of CSE in the endothelial layer was observed in old thoracic aorta. Ach-induced (1-30 microM) relaxation almost abolished in endothelium-denuded rings from both mice group. Also, relaxation Ach reduced in intact endothelium tissue of old mice aorta. In conclusion, the vasorelaxant responses to L-cysteine but not NaHS decreased and the protein expression of CSE reduced in old thoracic aorta rings consistent with a decrease in H2S concentration with aging and endothelium damage, suggesting that aging may be lead to decrease in enzyme expression and H2S signaling system due to endothelium damage in mouse thoracic aorta. Key words Aging, Hydrogen sulfide, L-cysteine, Endothelium, Thoracic aorta.
- MeSH
- aorta thoracica * metabolismus účinky léků MeSH
- cévní endotel * metabolismus účinky léků MeSH
- cystathionin-gama-lyasa metabolismus MeSH
- cystein farmakologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- signální transdukce fyziologie MeSH
- stárnutí * metabolismus fyziologie MeSH
- sulfan * metabolismus farmakologie MeSH
- vazodilatace * účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cystathionin-gama-lyasa MeSH
- cystein MeSH
- sulfan * MeSH
The prevalence of centenarians, people who lived 100 years and longer, is steadily growing in the last decades. This exceptional longevity is based on multifaceted processes influenced by a combination of intrinsic and extrinsic factors such as sex, (epi-)genetic factors, gut microbiota, cellular metabolism, exposure to oxidative stress, immune status, cardiovascular risk factors, environmental factors, and lifestyle behavior. Epidemiologically, the incidence rate of cardiovascular diseases is reduced in healthy centenarians along with late onset of age-related diseases compared with the general aged population. Understanding the mechanisms that affect vascular ageing in centenarians and the underlying factors could offer valuable insights for developing strategies to improve overall healthy life span in the elderly. This review discusses these key factors influencing vascular ageing and how their modulation could foster healthy longevity.
- Klíčová slova
- Cardiovascular diseases, Centenarians, Health span, Healthy vascular ageing,
- MeSH
- dlouhověkost * fyziologie MeSH
- kardiovaskulární nemoci * epidemiologie MeSH
- lidé MeSH
- oxidační stres MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- stárnutí * fyziologie MeSH
- střevní mikroflóra MeSH
- zdravé stárnutí * fyziologie MeSH
- životní styl MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH