Nejvíce citovaný článek - PubMed ID 38476742
Developments in predictive biomarker testing and targeted therapy in advanced stage non-small cell lung cancer and their application across European countries
Current European/US guidelines recommend that molecular testing in advanced non-small cell lung cancer (aNSCLC) be performed using next-generation sequencing (NGS). However, the global uptake of NGS is limited, largely owing to reimbursement constraints. We compared real-world costs of NGS and single-gene testing (SGT) in nonsquamous aNSCLC. This observational study was conducted across 10 pathology centers in 10 different countries worldwide. Biomarker data collected via structured questionnaires (1 January-31 December 2021) were used to feed micro-costing analyses for three scenarios ['Starting Point' (SP; 2021-2022), 'Current Practice' (CP; 2023-2024), and 'Future Horizons' (FH; 2025-2028)] in both a real-world model, comprising all biomarkers tested by each center, and a standardized model, comprising the same sets of biomarkers across centers. Testing costs (including retesting) encompassed personnel costs, consumables, equipment, and overheads. Overall, 4,491 patients with aNSCLC were evaluated. Mean per-patient costs decreased for NGS relative to SGT over time, with real-world model costs 18% lower for NGS than for SGT in the SP scenario, and 26% lower for NGS than for SGT in the CP scenario. Mean per-biomarker costs also decreased over time for NGS relative to SGT. In the standardized model, the tipping point for the minimum number of biomarkers required for NGS to result in cost savings (per patient) was 10 and 12 in the SP and CP scenarios, respectively. Retesting had a negligible impact on cost analyses, and results were robust to variation in cost parameters. This study provides robust real-world global evidence for cost savings with NGS-based panels over SGT to evaluate predictive biomarkers in nonsquamous aNSCLC when the number of biomarkers to be tested exceeds 10. Widespread adoption of NGS may enable more efficient use of limited healthcare resources.
- Klíčová slova
- NSCLC, cost comparison, next‐generation sequencing, precision medicine, predictive biomarker, single‐gene testing,
- MeSH
- analýza nákladů a výnosů MeSH
- genetické testování * ekonomika metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery * genetika MeSH
- nádory plic * genetika ekonomika diagnóza patologie MeSH
- náklady na zdravotní péči * MeSH
- nemalobuněčný karcinom plic * genetika ekonomika diagnóza patologie MeSH
- senioři MeSH
- vysoce účinné nukleotidové sekvenování * ekonomika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
- srovnávací studie MeSH
- Názvy látek
- nádorové biomarkery * MeSH
For patients with advanced stage non-small cell lung cancer (NSCLC), treatment strategies have changed significantly due to the introduction of targeted therapies and immunotherapy. In the last few years, we have seen an explosive growth of newly introduced targeted therapies in oncology and this development is expected to continue in the future. Besides primary targetable aberrations, emerging diagnostic biomarkers also include relevant co-occurring mutations and resistance mechanisms involved in disease progression, that have impact on optimal treatment management. To accommodate testing of pending biomarkers, it is necessary to establish routine large-panel next-generation sequencing (NGS) for all patients with advanced stage NSCLC. For cost-effectiveness and accessibility, it is recommended to implement predictive molecular testing using large-panel NGS in a dedicated, centralized expert laboratory within a regional oncology network. The central molecular testing center should host a regional Molecular Tumor Board and function as a hub for interpretation of rare and complex testing results and clinical decision-making.
- Klíčová slova
- Next-generation sequencing, Non-small cell lung cancer, Predictive biomarker testing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH