Nejvíce citovaný článek - PubMed ID 39191773
Variations in plume activity reveal the dynamics of water-filled faults on Enceladus
Tidal interactions play a key role in the dynamics and evolution of icy worlds. The intense tectonic activity of Europa and the eruption activity on Enceladus are clear examples of the manifestation of tidal deformation and associated dissipation. While tidal heating has long been recognized as a major driver in the activity of these icy worlds, the mechanism controlling how tidal forces deform the different internal layers and produce heat by tidal friction still remains poorly constrained. As tidal forcing varies with orbital characteristics (distance to the central planet, eccentricity, obliquity), the contribution of tidal heating to the internal heat budget can strongly change over geological timescales. In some circumstances, the tidally-produced heat can result in internal melting and surface activity taking various forms. Even in the absence of significant heat production, tidal deformation can be used to probe the interior structure, the tidal response of icy moons being strongly sensitive to their hydrosphere structure. In the present paper, we review the methods to compute tidal deformation and dissipation in the different layers composing icy worlds. After summarizing the main principle of tidal deformation and the different rheological models used to model visco-elastic tidal response, we describe the dissipation processes expected in rock-dominated cores, subsurface oceans and icy shells and highlight the potential effects of tidal heating in terms of thermal evolution and activity. We finally anticipate how data collected by future missions to Jupiter's and Saturn's moons could be used to constrain their tidal response and the consequences for past and present activities.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
After discovering a jet activity near the south pole of Saturn's moon Enceladus, the Cassini mission demonstrated the existence of a subsurface water ocean with a unique sampling opportunity through flybys. Diurnal variations in the observed brightness of the plume suggest a tidal control, although the existence and timing of two activity maxima seem to contradict stress analysis predictions. Here, we re-interpret the observed plume variability by combining a 3D global model of tidal deformation of the fractured ice shell with a 1D local model of transport processes within south-polar faults. Our model successfully predicts the observed plume's temporal variability by combining two independent vapour transport mechanisms: slip-controlled jet flow and normal-stress-controlled ambient flow. Moreover, it provides a possible explanation for the differences between the vapour and solid emission rates during the diurnal cycle and the observed fractionation of the various icy particle families. Our model prediction could be tested by future JWST observations targeted when Enceladus is at different positions on its orbit and could be used to determine the optimal strategy for plume material sampling by future space missions.
- Publikační typ
- časopisecké články MeSH