Nejvíce citovaný článek - PubMed ID 39472710
Experimental validation of effective zebra optimization algorithm-based MPPT under partial shading conditions in photovoltaic systems
This study first proposes an innovative method for optimizing the maximum power extraction from photovoltaic (PV) systems during dynamic and static environmental conditions (DSEC) by applying the horse herd optimization algorithm (HHOA). The HHOA is a bio-inspired technique that mimics the motion cycles of an entire herd of horses. Next, the linear active disturbance rejection control (LADRC) was applied to monitor the HHOA's reference voltage output. The LADRC, known for managing uncertainties and disturbances, improves the anti-interference capacity of the maximum power point tracking (MPPT) technique and speeds up the system's response rate. Then, in comparison to the traditional method (perturb & observe; P&O) and metaheuristic algorithms (conventional particle swarm optimization; CPSO, grasshopper optimization; GHO, and deterministic PSO; DPSO) through DSEC, the simulations results demonstrate that the combination HHOA-LADRC can successfully track the global maximum peak (GMP) with less fluctuations and a quicker convergence time. Finally, the experimental investigation of the proposed HHOA-LADRC was accomplished with the NI PXIE-1071 Hardware-In-Loop (HIL) prototype. The output findings show that the effectiveness of the provided HHOA-LADRC may approach a value higher than 99%, showed a quicker rate of converging and less oscillations in power through the detection mechanism.
- Klíčová slova
- Dynamic and static environmental conditions, Dynamic control, MPPT, Optimization techniques, Photovoltaic battery chargers,
- Publikační typ
- časopisecké články MeSH
This paper introduces an innovative, adaptive Fractional Open-Circuit Voltage (FOCV) algorithm combined with a robust Improved Model Reference Adaptive Controller (IMRAC) for Maximum Power Point Tracking (MPPT) in standalone photovoltaic (PV) systems. The proposed two-stage control strategy enhances energy efficiency, simplifies system operation, and addresses limitations in conventional MPPT methods, such as slow convergence, high oscillations, and susceptibility to environmental fluctuations. The first stage dynamically estimates the Maximum Power Point (MPP) voltage using a novel adaptive FOCV method, which eliminates the need for irradiance sensors or physical disconnection of PV modules. This stage incorporates a real-time adjustment of the kv factor based on variations in PV power, ensuring precise voltage estimation. In the second stage, the IMRAC controller ensures accurate tracking of the MPP by adapting swiftly to changes in irradiance and temperature, while minimizing ripple and power loss. Validation of the proposed system was carried out using Processor-in-the-Loop (PIL) testing on an Arduino Due microcontroller, showcasing real-world applicability. Comparative analysis with state-of-the-art MPPT controllers, including P&O-PI, InC-SMC, FLC, and VS P&O Backstepping, demonstrates superior tracking efficiency exceeding 99.49% under EN 50,530 standard test conditions. The system also maintains exceptional performance with minimal efficiency loss across a wide range of temperature and irradiance variations. By combining simplicity, robustness, and sustainability, this work establishes a cutting-edge solution for standalone PV systems, paving the way for more efficient and reliable renewable energy applications.