Nejvíce citovaný článek - PubMed ID 4670819
The zone of bat acarinia in Central Europe
INTRODUCTION: The epidemiology of filarial infections is a neglected area of bat research, with little information on filarial species diversity, life cycles, host ranges, infection prevalence and intensity, parasite pathogenicity, or competent vectors. Furthermore, molecular data for filarial worms are largely lacking. METHODS: Here, we examined 27 cadavers of parti-colored bat (Vespertilio murinus) from Czech rescue centers for filarial infection using gross necropsy. We also used nested polymerase chain reactions targeting partial mitochondrial cytochrome c oxidase subunit I (COI) partial gene to detect and genotype filarial parasites within organs, and ectoparasites of V. murinus from Russian and Slovak summer bat colonies. Samples with mixed filarial infections were cloned to extract separate sequences. The COI gene sequences were then subjected to phylogenetic analysis and a phylogenetic tree constructed. Adult filarial worms were also screened for the bacterial symbiont Wolbachia, using a standard PCR targeting the partial 16S rRNA gene. RESULTS: Two filarial nematode species were identified in single and mixed V. murinus infections, Litomosa sp. and a species of Onchocercidae. Adult Litomosa sp. nematodes were only recorded during necropsy of the abdominal, thoracic, and gravid uterine cavities of four bats. Molecular screening of organs for filarial DNA revealed prevalences of 81.5, 51.9 and 48.1% in Litomosa sp., Onchocercid sp. and co-infected bats, respectively. Adult Litomosa sp. worms proved negative for Wolbachia. The macronyssid mite Steatonyssus spinosus, collected in western Siberia (Russia), tested positive for Onchocercid sp. and mixed microfilarial infection. DISCUSSION: Our results revealed high prevalence, extensive geographic distribution and a potential vector of filarial infection in V. murinus. Our data represent an important contribution to the field of bat parasitology and indicate the need for a taxonomic revision of bat-infecting filarial nematodes based on both morphological and molecular methods.
- Klíčová slova
- Litomosa, Steatonyssus spinosus mite, Vespertilio murinus, Wolbachia, onchocercid filarial nematode, vector-borne parasites,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Vertebrate ectoparasites frequently play a role in transmission of infectious agents. Pseudogymnoascus destructans is a psychrophilic fungus known to cause white-nose syndrome (WNS), an emerging infectious disease of bats. It is transmitted with direct contact between bats or with contaminated environment. The aim of this study was to examine wing mites from the family Spinturnicidae parasitizing hibernating bats for the presence of P. destructans propagules as another possible transmission route. METHODS: Wing mites collected from 33 bats at four hibernation sites in the Czech Republic were inspected for the presence and load of pathogen's DNA using quantitative PCR. Simultaneously, wing damage of inspected bats caused by WNS was quantified using ultraviolet light (UV) transillumination and the relationship between fungal load on wing mites and intensity of infection was subjected to correlation analysis. RESULTS: All samples of wing mites were positive for the presence of DNA of P. destructans, indicating a high probability of their role in the transmission of the pathogen's propagules between bats. CONCLUSIONS: Mechanical transport of adhesive P. destructans spores and mycelium fragments on the body of spinturnicid mites is highly feasible. The specialised lifestyle of mites, i.e., living on bat wing membranes, the sites most typically affected by fungal growth, enables pathogen transport. Moreover, P. destructans metabolic traits suggest an ability to grow and sporulate on a range of organic substrates, including insects, which supports the possibility of growth on bat ectoparasites, at least in periods when bats roost in cold environments and enter torpor. In addition to transport of fungal propagules, mites may facilitate entry of fungal hyphae into the epidermis through injuries caused by biting.
- MeSH
- Ascomycota genetika fyziologie MeSH
- Chiroptera mikrobiologie MeSH
- hibernace MeSH
- křídla zvířecí parazitologie MeSH
- kůže parazitologie MeSH
- mycelium MeSH
- nos parazitologie MeSH
- roztoči mikrobiologie MeSH
- spory hub MeSH
- ultrafialové záření MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH