Nejvíce citovaný článek - PubMed ID 8036231
The life cycle of Asymphylodora tincae (Modeer 1790) (Trematoda: Monorchiidae): a unique development in monorchiid trematodes
Parasites comprise a huge part of the biodiversity on earth. However, on a local scale, not much is known about their diversity and community structure. Here, we assess the diversity of larval trematode communities in an interconnected freshwater system of the River Ruhr in Germany and analyse how the parasites are spatially and temporally distributed in the ecosystem. A total of 5347 snail hosts belonging to six species revealed a highly diverse parasite fauna with 36 trematode species. More abundant snail species harboured more species-rich trematode faunas and communities, with the two dominant snail species, Radix auricularia and Gyraulus albus, accounting for almost 90% of the trematode diversity and harbouring spatially and temporally stable parasite communities. The results highlight the important role of stable keystone host populations for trematode transmission, structure and diversity. This local trematode diversity reveals information on definitive host occurrence and trophic interactions within ecosystems.
- MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- hlemýždi parazitologie MeSH
- interakce hostitele a parazita genetika MeSH
- larva parazitologie MeSH
- lidé MeSH
- populační dynamika MeSH
- řeky MeSH
- sladká voda parazitologie MeSH
- Trematoda klasifikace patogenita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Německo MeSH
A survey of the larval stages (cercariae and metacercariae) of trematodes (Digenea) found in planorbid snails in Central Europe (Austria, Czech Republic, south-east Germany, Hungary, Poland and the Slovak Republic) is presented based on a study of 7,628 snails of 12 species examined between 1998-2006. A total of 34 trematode larval stages, comprising cercariae of 28 species and metacercariae of seven species (one species occurred both as cercaria and metacercaria) of nine families were found in 898 (11.5%) snails of eight species. The dominant cercariae were those belonging to the Rubenstrema exasperatum (Rudolphi, 1819)/Neoglyphe locellus (Kossack, 1910) species complex, Tylodelphys excavata (Rudolphi, 1803) and Echinostoma spiniferum (La Valette, 1855) sensu Nasincová (1992), all from Planorbarius corneus (Linnaeus). Almost the same spectrum of cercariae of the families Echinostomatidae, Plagiorchiidae and Omphalometridae was found in the present study as in previous reports; however, a considerably lower spectrum of cercariae of the families Diplostomidae and Strigeidae was recorded. The most frequent metacercariae were those of Echinoparyphium aconiatum Dietz, 1909, Neoglyphe locellus and Moliniella anceps (Molin, 1859), all occurring mainly in P. corneus. The most heavily infected snail species was P. corneus, followed by Planorbis planorbis (Linnaeus) and Segmentina nitida (Müller). The widest spectrum of trematode species was found in P. planorbis and P. corneus. Forty-two cercariae identified to the species level belonging to 15 families, plus an additional 43 taxa recorded under generic or provisional names, were reported from 11 species of planorbids in previous studies carried out in Central Europe. However, the actual number of trematode species occurring in the planorbid snails is probably much lower, because many, if not most, larval stages reported under provisional names or unidentified to the species level may be conspecific with identified adult forms. A key to the cercariae and metacercariae recorded from planorbids in Central Europe, together with illustrations of those species encountered most frequently in the field, is provided to facilitate identification.
- MeSH
- druhová specificita MeSH
- hlemýždi parazitologie MeSH
- larva anatomie a histologie MeSH
- Trematoda anatomie a histologie klasifikace izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH