Most cited article - PubMed ID 9045809
Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number
Promoter activities in Corynebacterium glutamicum strains with deletions of genes encoding sigma factors of RNA polymerase suggested that transcription from some promoters is controlled by two sigma factors. To prove that different sigma factors are involved in the recognition of selected Corynebacterium glutamicum promoters, in vitro transcription system was applied. It was found that a typical housekeeping promoter Pper interacts with the alternative sigma factor σ(B) in addition to the primary sigma factor σ(A). On the other way round, the σ(B)-dependent promoter of the pqo gene that is expressed mainly in the stationary growth phase was active also with σ(A). Some promoters of genes involved in stress responses (P1clgR, P2dnaK, and P2dnaJ2) were found to be recognized by two stress-responding sigma factors, σ(H) and σ(E). In vitro transcription system thus proved to be a useful direct technique for demonstrating the overlap of different sigma factors in recognition of individual promoters in C. glutamicum.
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Corynebacterium glutamicum genetics metabolism MeSH
- Transcription, Genetic * MeSH
- Promoter Regions, Genetic * MeSH
- Gene Expression Regulation, Bacterial * MeSH
- Sigma Factor genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Sigma Factor MeSH
This review summarizes the main results obtained in the fields of general and molecular microbiology and microbial genetics at the Institute of Microbiology of the Academy of Sciences of the Czech Republic (AS CR) [formerly Czechoslovak Academy of Sciences (CAS)] over more than 50 years. Contribution of the founder of the Institute, academician Ivan Málek, to the introduction of these topics into the scientific program of the Institute of Microbiology and to further development of these studies is also included.
- MeSH
- Academies and Institutes history MeSH
- History, 20th Century MeSH
- Genetics, Microbial history MeSH
- Molecular Biology history MeSH
- Check Tag
- History, 20th Century MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Geographicals
- Czech Republic MeSH
The cryptic multicopy plasmid pGA1 (4,826 bp) from Corynebacterium glutamicum LP-6 belongs to the fifth group of rolling-circle-replicating plasmids. A determinant, which negatively controls pGA1 replication, was localized in the leader region of the rep gene coding for the initiator of plasmid replication. This region, when cloned into the compatible vector pEC6, was found to cause decrease of segregational stability of the pGA1 derivative pKG48. A promoter and a single transcriptional start site were found in the rep leader region in orientation opposite to the rep gene. These results suggest that a small countertranscribed RNA (ctRNA) (ca. 89 nucleotides in length), which might inhibit translation of pGA1 rep gene, is formed. Analysis of predicted secondary structure of the pGA1-encoded ctRNA revealed features common with the known ctRNAs in bacteria. Inactivation of the promoter P-ctRNA caused a dramatic increase of copies of the respective plasmid, which proved a negative role of the ctRNA in control of pGA1 copy number. A region between the promoters Prep and P-ctRNA with a potential to form secondary structures on both ctRNA and rep mRNA was found to cause low activity of the rep promoter even when promoter P-ctRNA was deleted. Thus, the sequence within the rep leader region itself seems to act, in addition to the ctRNA, as a second regulatory element of a novel type, negatively influencing expression of the pGA1 rep gene.
- MeSH
- RNA, Bacterial MeSH
- Corynebacterium genetics MeSH
- DNA, Bacterial biosynthesis genetics MeSH
- Nucleic Acid Conformation MeSH
- Molecular Sequence Data MeSH
- Plasmids biosynthesis genetics MeSH
- Promoter Regions, Genetic MeSH
- Gene Expression Regulation, Bacterial * MeSH
- Base Sequence MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Bacterial MeSH
- DNA, Bacterial MeSH
The double-strand origin of replication (dso) of the rolling-circle-replicating (RC) plasmid pGA1 from Corynebacterium glutamicum was analyzed using the runoff DNA synthesis assay. The site- and strand-specific breakage of double-stranded plasmid DNA, representing the nic site of dso, was localized precisely within the sequence 5'-CTGG decreases AT-3' in the distal part of the pGA1 rep gene. This location of dso differs from the dso positions found on other RC plasmids and is in agreement with the classification of the plasmid pGA1 into a new group of RC plasmids.
- MeSH
- Corynebacterium genetics MeSH
- DNA, Bacterial genetics MeSH
- Chromosome Mapping MeSH
- Plasmids genetics MeSH
- Replication Origin * MeSH
- Base Sequence MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Bacterial MeSH