Most cited article - PubMed ID 9767484
Estimating surface area by the isotropic fakir method from thick slices cut in an arbitrary direction
PURPOSE: Quantitative description of hepatic microvascular bed could contribute to understanding perfusion CT imaging. Micro-CT is a useful method for the visualization and quantification of capillary-passable vascular corrosion casts. Our aim was to develop and validate open-source software for the statistical description of the vascular networks in micro-CT scans. METHODS: Porcine hepatic microvessels were injected with Biodur E20 resin, and the resulting corrosion casts were scanned with 1.9-4.7 [Formula: see text] resolution. The microvascular network was quantified using newly developed QuantAn software both in randomly selected volume probes (n = 10) and in arbitrarily outlined hepatic lobules (n = 4). The volumes, surfaces, lengths, and numbers of microvessel segments were estimated and validated in the same data sets with manual stereological counting. Calculations of tortuosity, radius histograms, length histograms, exports of the skeletonized vascular network into open formats, and an assessment of the degree of their anisotropy were performed. RESULTS: Within hepatic lobules, the microvessels had a volume fraction of 0.13 [Formula: see text] 0.05, surface density of 21.0 [Formula: see text] 2.0 [Formula: see text], length density of 169.0 [Formula: see text] 40.2 [Formula: see text], and numerical density of 588.5 [Formula: see text] 283.1 [Formula: see text]. Sensitivity analysis of the automatic analysis to binary opening, closing, threshold offset, and aggregation radius of branching nodes was performed. CONCLUSION: The software QuantAn and its source code are openly available to researchers working in the field of stochastic geometry of microvessels in micro-CT scans or other three-dimensional imaging methods. The implemented methods comply with reproducible stereological techniques, and they were highly consistent with manual counting. Preliminary morphometrics of the classical hepatic lobules in pig were provided.
- Keywords
- Liver, Microvessels, Pig, Porcine, Python, Stereology, X-ray microtomography,
- MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Liver blood supply diagnostic imaging MeSH
- Corrosion MeSH
- Microvessels diagnostic imaging MeSH
- Swine MeSH
- X-Ray Microtomography methods MeSH
- Software MeSH
- Imaging, Three-Dimensional methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Brain size is widely used as a measure of behavioural complexity and sensory-locomotive capacity in avians but has largely relied upon laborious dissections, endoneurocranial tissue displacement, and physical measurement to derive comparative volumes. As an alternative, we present a new precise calculation method based upon coupled magnetic resonance (MR) imaging and computed tomography (CT). Our approach utilizes a novel interactive Fakir probe cross-referenced with an automated CT protocol to efficiently generate total volumes and surface areas of the brain tissue and endoneurocranial space, as well as the discrete cephalic compartments. We also complemented our procedures by using sodium polytungstate (SPT) as a contrast agent. This greatly enhanced CT applications but did not degrade MR quality and is therefore practical for virtual brain tissue reconstructions employing multiple imaging modalities. To demonstrate our technique, we visualized sex-based brain size differentiation in a sample set of Ring-necked pheasants (Phasianus colchicus). This revealed no significant variance in relative volume or surface areas of the primary brain regions. Rather, a trend towards isometric enlargement of the total brain and endoneurocranial space was evidenced in males versus females, thus advocating a non-differential sexually dimorphic pattern of brain size increase amongst these facultatively flying birds.
- MeSH
- Galliformes MeSH
- Contrast Media chemistry MeSH
- Magnetic Resonance Imaging * MeSH
- Brain diagnostic imaging MeSH
- Tomography, X-Ray Computed * MeSH
- Image Processing, Computer-Assisted MeSH
- Tungsten Compounds chemistry MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Contrast Media MeSH
- Tungsten Compounds MeSH
- tungstate MeSH Browser
The anatomical structure of mesophyll tissue in the leaf is tightly connected with many physiological processes in plants. One of the most important mesophyll parameters related to photosynthesis is the internal leaf surface area, i.e. the surface area of mesophyll cell walls exposed to intercellular spaces. An efficient design-based stereological method can be applied for estimation of this parameter, using software-randomized virtual fakir test probes in stacks of optical sections acquired by a confocal microscope within thick physical free-hand sections (i.e. acquired using a hand microtome), as we have shown in the case of fresh Norway spruce needles recently. However, for wider practical use in plant ecophysiology, a suitable form of sample storage and other possible technical constraints of this methodology need to be checked. We tested the effect of freezing conifer needles on their anatomical structure as well as the effect of possible deformations due to the cutting of unembedded material by a hand microtome, which can result in distortions of cutting surfaces. In the present study we found a higher proportion of intercellular spaces in mesophyll in regions near to the surface of a physical section, which means that the measurements should be restricted only to the middle region of the optical section series. On the other hand, the proportion of intercellular spaces in mesophyll as well as the internal needle surface density in mesophyll did not show significant difference between fresh and frozen needles; therefore, we conclude that freezing represents a suitable form of storage of sampled material for proposed stereological evaluation.
Three-dimensional (3D) study of capillary network of individual muscle fibres in rat extensor digitorum longus (EDL) and soleus (SOL) muscles is presented. Stereology and 3D reconstruction techniques were applied to stacks of serial optical sections recorded by a confocal microscope from thick muscle slices. The results suggest that SOL muscle fibres have a larger surface area and volume as well as a larger length of capillaries per fibre length than EDL. On the other hand, these two muscles have a similar ratio of capillary length to fibre surface area. The 3D approach to evaluation of muscle fibre capillarization brings many advantages over traditional measurements made on single muscle sections and could also be applied to the study of angiogenesis in other tissues.
- MeSH
- Capillaries anatomy & histology MeSH
- Microscopy, Confocal MeSH
- Muscle Fibers, Skeletal cytology MeSH
- Muscle, Skeletal blood supply cytology MeSH
- Rats MeSH
- Image Processing, Computer-Assisted MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH