Nejvíce citovaný článek - PubMed ID 11811667
BACKGROUND: Microcirculatory factors play an important role in amyloid-β (Aβ)-related neuropathology in Alzheimer's disease (AD). Transgenic (Tg) rat models of mutant Aβ deposition can enhance our understanding of this microvascular pathology. OBJECTIVE: Here we report stereology-based quantification and comparisons (between- and within-group) of microvessel length and number and associated parameters in hippocampal subregions in Tg model of AD in Fischer 344 rats and non-Tg littermates. METHODS: Systematic-random samples of tissue sections were processed and laminin immunostained to visualize microvessels through the entire hippocampus in Tg and non-Tg rats. A computer-assisted stereology system was used to quantify microvessel parameters including total number, total length, and associated densities in dentate gyrus (DG) and cornu ammonis (CA) subregions. RESULTS: Thin hair-like capillaries are common near Aβ plaques in hippocampal subregions of Tg rats. There are a 53% significant increase in average length per capillary across entire hippocampus (p≤0.04) in Tg compared to non-Tg rats; 49% reduction in capillary length in DG (p≤0.02); and, higher microvessel density in principal cell layers (p≤0.03). Furthermore, within-group comparisons confirm Tg but not non-Tg rats have significant increase in number density (p≤0.01) and potential diffusion distance (p≤0.04) of microvessels in principal cell layers of hippocampal subregions. CONCLUSION: We show the Tg deposition of human Aβ mutations in rats disrupts the wild-type microanatomy of hippocampal microvessels. Stereology-based microvascular parameters could promote the development of novel strategies for protection and the therapeutic management of AD.
- Klíčová slova
- Alzheimer’s disease, TgF344-AD rat, capillary, hippocampus, microvessels, stereology,
- MeSH
- Alzheimerova nemoc patologie MeSH
- amyloidní plaky patologie MeSH
- hipokampus patologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mikrocévy * metabolismus patologie MeSH
- modely nemocí na zvířatech MeSH
- potkani inbrední F344 MeSH
- potkani transgenní metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
PURPOSE: Quantitative description of hepatic microvascular bed could contribute to understanding perfusion CT imaging. Micro-CT is a useful method for the visualization and quantification of capillary-passable vascular corrosion casts. Our aim was to develop and validate open-source software for the statistical description of the vascular networks in micro-CT scans. METHODS: Porcine hepatic microvessels were injected with Biodur E20 resin, and the resulting corrosion casts were scanned with 1.9-4.7 [Formula: see text] resolution. The microvascular network was quantified using newly developed QuantAn software both in randomly selected volume probes (n = 10) and in arbitrarily outlined hepatic lobules (n = 4). The volumes, surfaces, lengths, and numbers of microvessel segments were estimated and validated in the same data sets with manual stereological counting. Calculations of tortuosity, radius histograms, length histograms, exports of the skeletonized vascular network into open formats, and an assessment of the degree of their anisotropy were performed. RESULTS: Within hepatic lobules, the microvessels had a volume fraction of 0.13 [Formula: see text] 0.05, surface density of 21.0 [Formula: see text] 2.0 [Formula: see text], length density of 169.0 [Formula: see text] 40.2 [Formula: see text], and numerical density of 588.5 [Formula: see text] 283.1 [Formula: see text]. Sensitivity analysis of the automatic analysis to binary opening, closing, threshold offset, and aggregation radius of branching nodes was performed. CONCLUSION: The software QuantAn and its source code are openly available to researchers working in the field of stochastic geometry of microvessels in micro-CT scans or other three-dimensional imaging methods. The implemented methods comply with reproducible stereological techniques, and they were highly consistent with manual counting. Preliminary morphometrics of the classical hepatic lobules in pig were provided.
- Klíčová slova
- Liver, Microvessels, Pig, Porcine, Python, Stereology, X-ray microtomography,
- MeSH
- interpretace obrazu počítačem metody MeSH
- játra krevní zásobení diagnostické zobrazování MeSH
- koroze MeSH
- mikrocévy diagnostické zobrazování MeSH
- prasata MeSH
- rentgenová mikrotomografie metody MeSH
- software MeSH
- zobrazování trojrozměrné metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Degenerative affections of nerve tissues are often accompanied by changes of vascularization. In this regard, not much is known about hereditary cerebellar degeneration. In this study, we compared the vascularity of the individual cerebellar components and the mesencephalon of 3-month-old wild type mice (n = 5) and Lurcher mutant mice, which represent a model of hereditary olivocerebellar degeneration (n = 5). Paraformaldehyde-fixed brains were processed into 18-μm thick serial sections with random orientation. Microvessels were visualized using polyclonal rabbit anti-laminin antibodies. Then, the stacks comprised of three 5-μm thick optical sections were recorded using systematic uniform random sampling. Stereological assessment was conducted based on photo-documentation. We found that each of the cerebellar components has its own features of vascularity. The greatest number and length of vessels were found in the granular layer; the number of vessels was lower in the molecular layer, and the lowest number of vessels was observed in the cerebellar nuclei corresponding with their low volume. Nevertheless, the nuclei had the greatest density of blood vessels. The reduction of cerebellum volume in the Lurcher mice was accompanied by a reduction in vascularization in the individual cerebellar components, mainly in the cortex. Moreover, despite the lower density of microvessels in the Lurcher mice compared with the wild type mice, the relative density of microvessels in the cerebellar cortex and nuclei was greater in Lurcher mice. The complete primary morphometric data, in the form of continuous variables, is included as a supplement. Mapping of the cerebellar and midbrain microvessels has explanatory potential for studies using mouse models of neurodegeneration.
- Klíčová slova
- Lurcher, blood microvessels, cerebellum, cerebral degeneration, laminin, mice, quantitative histology, stereology,
- Publikační typ
- časopisecké články MeSH