Blind deconvolution, which comprises simultaneous blur and image estimations, is a strongly ill-posed problem. It is by now well known that if multiple images of the same scene are acquired, this multichannel (MC) blind deconvolution problem is better posed and allows blur estimation directly from the degraded images. We improve the MC idea by adding robustness to noise and stability in the case of large blurs or if the blur size is vastly overestimated. We formulate blind deconvolution as an l(1) -regularized optimization problem and seek a solution by alternately optimizing with respect to the image and with respect to blurs. Each optimization step is converted to a constrained problem by variable splitting and then is addressed with an augmented Lagrangian method, which permits simple and fast implementation in the Fourier domain. The rapid convergence of the proposed method is illustrated on synthetically blurred data. Applicability is also demonstrated on the deconvolution of real photos taken by a digital camera.
- MeSH
- algoritmy * MeSH
- artefakty * MeSH
- interpretace obrazu počítačem metody MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- vylepšení obrazu metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
We address the problem of estimating the uncertainty of pixel based image registration algorithms, given just the two images to be registered, for cases when no ground truth data is available. Our novel method uses bootstrap resampling. It is very general, applicable to almost any registration method based on minimizing a pixel-based similarity criterion; we demonstrate it using the SSD, SAD, correlation, and mutual information criteria. We show experimentally that the bootstrap method provides better estimates of the registration accuracy than the state-of-the-art CramEr-Rao bound method. Additionally, we evaluate also a fast registration accuracy estimation (FRAE) method which is based on quadratic sensitivity analysis ideas and has a negligible computational overhead. FRAE mostly works better than the CramEr-Rao bound method but is outperformed by the bootstrap method.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We propose a new approach to diagnostic evaluation of screening mammograms based on local statistical texture models. The local evaluation tool has the form of a multivariate probability density of gray levels in a suitably chosen search window. First, the density function in the form of Gaussian mixture is estimated from data obtained by scanning of the mammogram with the search window. Then we evaluate the estimated mixture at each position and display the corresponding log-likelihood value as a gray level at the window center. The resulting log-likelihood image closely correlates with the structural details of the original mammogram and emphasizes unusual places. We assume that, in parallel use, the log-likelihood image may provide additional information to facilitate the identification of malignant lesions as atypical locations of high novelty.
- MeSH
- algoritmy MeSH
- diagnóza počítačová metody MeSH
- lidé MeSH
- mamografie * MeSH
- multivariační analýza MeSH
- nádory prsu diagnóza prevence a kontrola MeSH
- normální rozdělení MeSH
- počítačové zpracování obrazu metody MeSH
- statistické modely * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We examine the problem of restoration from multiple images degraded by camera motion blur. We consider scenes with significant depth variations resulting in space-variant blur. The proposed algorithm can be applied if the camera moves along an arbitrary curve parallel to the image plane, without any rotations. The knowledge of camera trajectory and camera parameters is not necessary. At the input, the user selects a region where depth variations are negligible. The algorithm belongs to the group of variational methods that estimate simultaneously a sharp image and a depth map, based on the minimization of a cost functional. To initialize the minimization, it uses an auxiliary window-based depth estimation algorithm. Feasibility of the algorithm is demonstrated by three experiments with real images.
- MeSH
- algoritmy * MeSH
- artefakty * MeSH
- interpretace obrazu počítačem metody MeSH
- počítačové zpracování signálu * MeSH
- pohyb těles MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- umělá inteligence * MeSH
- uživatelské rozhraní počítače MeSH
- vylepšení obrazu metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper presents a new approach to the blind deconvolution and superresolution problem of multiple degraded low-resolution frames of the original scene. We do not assume any prior information about the shape of degradation blurs. The proposed approach consists of building a regularized energy function and minimizing it with respect to the original image and blurs, where regularization is carried out in both the image and blur domains. The image regularization based on variational principles maintains stable performance under severe noise corruption. The blur regularization guarantees consistency of the solution by exploiting differences among the acquired low-resolution images. Several experiments on synthetic and real data illustrate the robustness and utilization of the proposed technique in real applications.
- MeSH
- algoritmy * MeSH
- interpretace obrazu počítačem metody MeSH
- numerická analýza pomocí počítače MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- ukládání a vyhledávání informací metody MeSH
- umělá inteligence * MeSH
- vylepšení obrazu metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this paper, a new set of moment invariants with respect to rotation, translation, and scaling suitable for recognition of objects having N-fold rotation symmetry are presented. Moment invariants described earlier cannot be used for this purpose because most moments of symmetric objects vanish. The invariants proposed here are based on complex moments. Their independence and completeness are proven theoretically and their performance is demonstrated by experiments.
- MeSH
- algoritmy * MeSH
- interpretace obrazu počítačem metody MeSH
- reprodukovatelnost výsledků MeSH
- rotace MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- ukládání a vyhledávání informací metody MeSH
- umělá inteligence * MeSH
- vylepšení obrazu metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Typical time intervals between acquisitions of three-dimensional (3-D) images of the same cell in live cell imaging are in the orders of minutes. In the meantime, the live cell can move in a water basin on the stage. This movement can hamper the studies of intranuclear processes. We propose a fast point-based image registration method for the suppression of the movement of a cell as a whole in the image data. First, centroids of certain intracellular objects are computed for each image in a time-lapse series. Then, a matching between the centroids, which have the maximal number of pairs, is sought between consecutive point sets by a 3-D extension of a two-dimensional fast point pattern matching method, which is invariant to rotation, translation, local distortion, and extra/missing points. The proposed 3-D extension assumes rotations only around the z axis to retain the complexity of the original method. The final step involves computing the optimal fully 3-D transformation between images from corresponding points in the least-squares manner. The robustness of the method was evaluated on generated data. The results of the simulations show that the method is very precise and its correctness can be estimated. This article also presents two practical application examples, namely the registration of images of HP1 domains and the registration of images of telomeres. More than 97% of time-consecutive images were successfully registered. The results show that the method is very well suited to live cell imaging.
- MeSH
- algoritmy MeSH
- artefakty MeSH
- fluorescenční mikroskopie metody MeSH
- interpretace obrazu počítačem metody MeSH
- kultivované buňky cytologie MeSH
- lidé MeSH
- pohyb buněk MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- subtrakční technika MeSH
- ukládání a vyhledávání informací metody MeSH
- umělá inteligence MeSH
- videomikroskopie metody MeSH
- vylepšení obrazu metody MeSH
- zobrazování trojrozměrné metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
Existing multichannel blind restoration techniques assume perfect spatial alignment of channels, correct estimation of blur size, and are prone to noise. We developed an alternating minimization scheme based on a maximum a posteriori estimation with a priori distribution of blurs derived from the multichannel framework and a priori distribution of original images defined by the variational integral. This stochastic approach enables us to recover the blurs and the original image from channels severely corrupted by noise. We observe that the exact knowledge of the blur size is not necessary, and we prove that translation misregistration up to a certain extent can be automatically removed in the restoration process.
- MeSH
- algoritmy * MeSH
- interpretace obrazu počítačem metody MeSH
- počítačové zpracování signálu MeSH
- rozpoznávání automatizované metody MeSH
- subtrakční technika * MeSH
- ukládání a vyhledávání informací metody MeSH
- umělá inteligence * MeSH
- vylepšení obrazu metody MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun.
- Publikační typ
- časopisecké články MeSH
The article is devoted to the feature-based recognition of blurred images acquired by a linear shift-invariant imaging system against an image database. The proposed approach consists of describing images by features that are invariant with respect to blur and recognizing images in the feature space. The PSF identification and image restoration are not required. A set of symmetric blur invariants based on image moments is introduced. A numerical experiment is presented to illustrate the utilization of the invariants for blurred image recognition. Robustness of the features is also briefly discussed.
- Publikační typ
- časopisecké články MeSH