AMA1 vector Dotaz Zobrazit nápovědu
The advent of CRISPR/Cas technology has revolutionized genome editing, offering simplicity, precision, and cost-effectiveness. While its application in biological control fungi has been limited, including the cosmopolitan fungus Metarhizium anisopliae, recent advancements show promise. However, integrating cas9 and selection-marker genes into fungal genomes poses challenges, including reduced efficiency, toxicity, and off-target effects. Besides, marker-free genetic engineering through a CRISPR recyclable system presents a viable solution, enabling efficient mutant generation without compromising fitness and virulence. This study pioneers the construction of marker-free strains of M. anisopliae using a CRISPR/Cas9 recyclable system. Precise deletion of albA and ku70, alongside gfp cassette insertion, confirms the system efficiency. This innovative approach holds significant potential for facilitating in-depth molecular studies, understanding their ecological roles in agricultural systems, and enhancing biocontrol efficacy against insect pests through genetic improvement.
- Klíčová slova
- AMA1 vector, Biological control, Entomopathogenic, Gene edition, Marker free,
- Publikační typ
- časopisecké články MeSH
Claviceps purpurea is a filamentous fungus well known as a widespread plant pathogen, but it is also an important ergot alkaloid producer exploited by the pharmaceutic industry. In this work, we demonstrated that CRISPR/Cas9 can be a tool for directed mutagenesis in C. purpurea targeting pyr4 and TrpE genes encoding the orotidine 5'-phosphate decarboxylase involved in pyrimidine biosynthesis and the α-subunit of the anthranilate synthase involved in tryptophan biosynthesis, respectively. After protoplast transformation and single spore isolation, homokaryotic mutants showing uridine or tryptophan auxotrophy were selected. In all cases, insertions or insertions combined with deletions were found mostly 3 bp upstream of the PAM sequence. However, transformation efficiencies of CRISPR/Cas9 and CRISPR/Cas9 mediated homology-directed repair only slightly improved in comparison to homologous recombination-mediated knocking-out of the TrpE gene. Moreover, Trp auxotrophs were non-infectious towards rye plants likely due to a decreased production of the plant hormones auxins, which are synthesized by C. purpurea from indole-3-glycerolphosphate in Trp-dependent and Trp-independent biosynthetic pathways, and help the fungus to colonize the plant host. It was demonstrated that the CRISPR/Cas9 vector containing autonomous replicative sequence AMA1 can be fully removed by further culturing of C. purpurea on non-selective media. This method enables introducing multiple mutations in Claviceps and makes feasible metabolic engineering of industrial strains.
- Klíčová slova
- Anthranilate synthase, CRISPR/Cas9, CRISPR/Cas9-mediated HDR, Claviceps purpurea, HR-mediated gene knock-out, Orotidine 5’-phosphate decarboxylase,
- MeSH
- Claviceps * genetika MeSH
- CRISPR-Cas systémy genetika MeSH
- editace genu MeSH
- mutageneze MeSH
- protoplasty MeSH
- Publikační typ
- časopisecké články MeSH