Fuzzy parameter based multi objective transportation problem
Dotaz
Zobrazit nápovědu
This paper introduces a novel two-step generalized parametric approach for addressing Fuzzy Multi-Objective Transportation Problems (FMOTPs), commonly encountered in logistics and transportation systems when essential parameters-such as supply, demand, and transportation costs-are uncertain. Driven by the necessity for resilient and flexible decision-making amidst uncertainty, the method employs Triangular Fuzzy Numbers (TFNs) and an accuracy parameter μ ∈ [0,1] to turn fuzzy data into precise equivalents through parametric transformation. Initially, imprecise input data are methodically converted into a sequence of Crisp Multi-Objective Transportation Problems (CMOTPs). In the subsequent phase, these CMOTPs are addressed by Fuzzy Linear Programming (FLP), and the most equitable solution at each μ-level is determined by its Euclidean distance from the fuzzy ideal solution. The suggested method is tested by numerical case studies and compared with current models-such as Nomani's approach, fuzzy DEA, and Grey Relational Analysis (GRA)-showing enhanced performance in optimality proximity, solution stability, and ranking accuracy. This research has practical applications, including improved managerial capacity to manage uncertainty, reconcile trade-offs among cost, time, and service quality, and execute robust transportation strategies in fluctuating environments. The model's scalability and openness make it suited for integration into enterprise logistics systems across industries such as manufacturing, retail, distribution, and e-commerce. The study offers a systematic and computationally efficient framework that enhances both theoretical comprehension and practical implementation of fuzzy optimization in multi-objective transportation planning.