ML, Machine Learning Dotaz Zobrazit nápovědu
AIMS: Takotsubo syndrome (TTS) is associated with a substantial rate of adverse events. We sought to design a machine learning (ML)-based model to predict the risk of in-hospital death and to perform a clustering of TTS patients to identify different risk profiles. METHODS AND RESULTS: A ridge logistic regression-based ML model for predicting in-hospital death was developed on 3482 TTS patients from the International Takotsubo (InterTAK) Registry, randomly split in a train and an internal validation cohort (75% and 25% of the sample size, respectively) and evaluated in an external validation cohort (1037 patients). Thirty-one clinically relevant variables were included in the prediction model. Model performance represented the primary endpoint and was assessed according to area under the curve (AUC), sensitivity and specificity. As secondary endpoint, a K-medoids clustering algorithm was designed to stratify patients into phenotypic groups based on the 10 most relevant features emerging from the main model. The overall incidence of in-hospital death was 5.2%. The InterTAK-ML model showed an AUC of 0.89 (0.85-0.92), a sensitivity of 0.85 (0.78-0.95) and a specificity of 0.76 (0.74-0.79) in the internal validation cohort and an AUC of 0.82 (0.73-0.91), a sensitivity of 0.74 (0.61-0.87) and a specificity of 0.79 (0.77-0.81) in the external cohort for in-hospital death prediction. By exploiting the 10 variables showing the highest feature importance, TTS patients were clustered into six groups associated with different risks of in-hospital death (28.8% vs. 15.5% vs. 5.4% vs. 1.0.8% vs. 0.5%) which were consistent also in the external cohort. CONCLUSION: A ML-based approach for the identification of TTS patients at risk of adverse short-term prognosis is feasible and effective. The InterTAK-ML model showed unprecedented discriminative capability for the prediction of in-hospital death.
- Klíčová slova
- Artificial intelligence, Machine learning, Mortality prediction, Outcome, Takotsubo syndrome,
- MeSH
- lidé MeSH
- mortalita v nemocnicích MeSH
- prognóza MeSH
- srdeční selhání * komplikace MeSH
- strojové učení MeSH
- takotsubo kardiomyopatie * diagnóza komplikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.
- Klíčová slova
- machine learning, reproducibility, standards, transparency,
- MeSH
- databáze faktografické MeSH
- lidé MeSH
- registrace * MeSH
- reprodukovatelnost výsledků MeSH
- řízené strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Additive friction stir deposition (AFSD) is a novel solid-state additive manufacturing technique that circumvents issues of porosity, cracking, and properties anisotropy that plague traditional powder bed fusion and directed energy deposition approaches. However, correlations between process parameters, thermal profiles, and resulting microstructure in AFSD still need to be better understood. This hinders process optimization for properties. This work employs a framework combining supervised machine learning (SML) and physics-informed neural networks (PINNs) to predict peak temperature distribution in AFSD from process parameters. Eight regression algorithms were implemented for SML modeling, while four PINNs leveraged governing equations for transport, wave propagation, heat transfer, and quantum mechanics. Across multiple statistical measures, ensemble techniques like gradient boosting proved superior for SML, with the lowest MSE of 165.78. The integrated ML approach was also applied to classify deposition quality from process factors, with logistic regression delivering robust accuracy. By fusing data-driven learning and fundamental physics, this dual methodology provides comprehensive insights into tailoring microstructure through thermal management in AFSD. The work demonstrates the power of bridging statistical and physics-based modeling for elucidating AM process-property relationships.
Classification problems in the small data regime (with small data statistic T and relatively large feature space dimension D) impose challenges for the common machine learning (ML) and deep learning (DL) tools. The standard learning methods from these areas tend to show a lack of robustness when applied to data sets with significantly fewer data points than dimensions and quickly reach the overfitting bound, thus leading to poor performance beyond the training set. To tackle this issue, we propose eSPA+, a significant extension of the recently formulated entropy-optimal scalable probabilistic approximation algorithm (eSPA). Specifically, we propose to change the order of the optimization steps and replace the most computationally expensive subproblem of eSPA with its closed-form solution. We prove that with these two enhancements, eSPA+ moves from the polynomial to the linear class of complexity scaling algorithms. On several small data learning benchmarks, we show that the eSPA+ algorithm achieves a many-fold speed-up with respect to eSPA and even better performance results when compared to a wide array of ML and DL tools. In particular, we benchmark eSPA+ against the standard eSPA and the main classes of common learning algorithms in the small data regime: various forms of support vector machines, random forests, and long short-term memory algorithms. In all the considered applications, the common learning methods and eSPA are markedly outperformed by eSPA+, which achieves significantly higher prediction accuracy with an orders-of-magnitude lower computational cost.
- MeSH
- algoritmy * MeSH
- entropie MeSH
- strojové učení * MeSH
- support vector machine MeSH
- Publikační typ
- časopisecké články MeSH
TransCelerate reports on the results of 2019, 2020, and 2021 member company (MC) surveys on the use of intelligent automation in pharmacovigilance processes. MCs increased the number and extent of implementation of intelligent automation solutions throughout Individual Case Safety Report (ICSR) processing, especially with rule-based automations such as robotic process automation, lookups, and workflows, moving from planning to piloting to implementation over the 3 survey years. Companies remain highly interested in other technologies such as machine learning (ML) and artificial intelligence, which can deliver a human-like interpretation of data and decision making rather than just automating tasks. Intelligent automation solutions are usually used in combination with more than one technology being used simultaneously for the same ICSR process step. Challenges to implementing intelligent automation solutions include finding/having appropriate training data for ML models and the need for harmonized regulatory guidance.
- MeSH
- automatizace MeSH
- farmakovigilance * MeSH
- lidé MeSH
- strojové učení MeSH
- technologie MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The search for non-invasive, fast, and low-cost diagnostic tools has gained significant traction among many researchers worldwide. Dielectric properties calculated from microwave signals offer unique insights into biological tissue. Material properties, such as relative permittivity (εr) and conductivity (σ), can vary significantly between healthy and unhealthy tissue types at a given frequency. Understanding this difference in properties is key for identifying the disease state. The frequency-dependent nature of the dielectric measurements results in large datasets, which can be postprocessed using artificial intelligence (AI) methods. In this work, the dielectric properties of liver tissues in three mouse models of liver disease are characterized using dielectric spectroscopy. The measurements are grouped into four categories based on the diets or disease state of the mice, i.e., healthy mice, mice with non-alcoholic steatohepatitis (NASH) induced by choline-deficient high-fat diet, mice with NASH induced by western diet, and mice with liver fibrosis. Multi-class classification machine learning (ML) models are then explored to differentiate the liver tissue groups based on dielectric measurements. The results show that the support vector machine (SVM) model was able to differentiate the tissue groups with an accuracy up to 90%. This technology pipeline, thus, shows great potential for developing the next generation non-invasive diagnostic tools.
- Klíčová slova
- dielectric spectroscopy, fibrosis, machine learning, microwave, non-alcoholic steatohepatitis, relative permittivity,
- MeSH
- jaterní cirhóza MeSH
- játra patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater * diagnóza patologie MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This study tested whether machine learning (ML) methods can effectively separate individual plants from complex 3D canopy laser scans as a prerequisite to analyzing particular plant features. For this, we scanned mung bean and chickpea crops with PlantEye (R) laser scanners. Firstly, we segmented the crop canopies from the background in 3D space using the Region Growing Segmentation algorithm. Then, Convolutional Neural Network (CNN) based ML algorithms were fine-tuned for plant counting. Application of the CNN-based (Convolutional Neural Network) processing architecture was possible only after we reduced the dimensionality of the data to 2D. This allowed for the identification of individual plants and their counting with an accuracy of 93.18% and 92.87% for mung bean and chickpea plants, respectively. These steps were connected to the phenotyping pipeline, which can now replace manual counting operations that are inefficient, costly, and error-prone. The use of CNN in this study was innovatively solved with dimensionality reduction, addition of height information as color, and consequent application of a 2D CNN-based approach. We found there to be a wide gap in the use of ML on 3D information. This gap will have to be addressed, especially for more complex plant feature extractions, which we intend to implement through further research.
- Klíčová slova
- 3D point clouds, computer vision, machine learning, phenotyping, plant detection,
- MeSH
- algoritmy * MeSH
- neuronové sítě MeSH
- strojové učení * MeSH
- Publikační typ
- časopisecké články MeSH
Acute heart failure (AHF) is a common and severe condition with a poor prognosis. Its course is often complicated by worsening renal function (WRF), exacerbating the outcome. The population of AHF patients experiencing WRF is heterogenous, and some novel possibilities for its analysis have recently emerged. Clustering is a machine learning (ML) technique that divides the population into distinct subgroups based on the similarity of cases (patients). Given that, we decided to use clustering to find subgroups inside the AHF population that differ in terms of WRF occurrence. We evaluated data from the three hundred and twelve AHF patients hospitalized in our institution who had creatinine assessed four times during hospitalization. Eighty-six variables evaluated at admission were included in the analysis. The k-medoids algorithm was used for clustering, and the quality of the procedure was judged by the Davies-Bouldin index. Three clinically and prognostically different clusters were distinguished. The groups had significantly (p = 0.004) different incidences of WRF. Inside the AHF population, we successfully discovered that three groups varied in renal prognosis. Our results provide novel insight into the AHF and WRF interplay and can be valuable for future trial construction and more tailored treatment.
- Klíčová slova
- acute heart failure, artificial intelligence, cardiorenal syndrome, clustering, machine learning,
- MeSH
- akutní nemoc MeSH
- kreatinin MeSH
- ledviny fyziologie MeSH
- lidé MeSH
- srdeční selhání * MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kreatinin MeSH
Rechargeable batteries provide crucial energy storage systems for renewable energy sources, as well as consumer electronics and electrical vehicles. There are a number of important parameters that determine the suitability of electrode materials for battery applications, such as the average voltage and the maximum specific capacity which contribute to the overall energy density. Another important performance criterion for battery electrode materials is their volume change upon charging and discharging, which contributes to determine the cyclability, Coulombic efficiency, and safety of a battery. In this work, we present deep neural network regression machine learning models (ML), trained on data obtained from the Materials Project database, for predicting average voltages and volume change upon charging and discharging of electrode materials for metal-ion batteries. Our models exhibit good performance as measured by the average mean absolute error obtained from a 10-fold cross-validation, as well as on independent test sets. We further assess the robustness of our ML models by investigating their screening potential beyond the training database. We produce Na-ion electrodes by systematically replacing Li-ions in the original database by Na-ions and, then, selecting a set of 22 electrodes that exhibit a good performance in energy density, as well as small volume variations upon charging and discharging, as predicted by the machine learning model. The ML predictions for these materials are then compared to quantum-mechanics based calculations. Our results reaffirm the significant role of machine learning techniques in the exploration of materials for battery applications.
- Klíčová slova
- deep learning, deep neural networks, electrode voltage, electrode volume change, machine learning, metal-ion batteries,
- Publikační typ
- časopisecké články MeSH
Infertility has emerged as a significant public health concern, with assisted reproductive technology (ART) is a last-resort treatment option. However, ART's efficacy is limited by significant financial cost and physical discomfort. The aim of this study is to build Machine learning (ML) decision-support models to predict the optimal range of embryo numbers to transfer, using data from infertile couples identified through literature reviews. Binary classification models were developed to classify cases into two groups: those transferring two or fewer embryos and those transferring three or four. Four popular ML algorithms were used, including random forest (RF), logistic regression (LR), support vector machine (SVM), and artificial neural network (ANN), considering seven criteria: the woman's age, sperm origin, the developmental qualities of four potential embryos, infertility duration, assessment of the woman, morphological qualities of the four best embryos on the day of transfer, and number of oocytes extracted. The stratified 3-fold cross-validation results show that the SVM model obtained the highest average accuracy (95.83%) and demonstrated the best overall performance, closely followed by the ANN and LR models with an average accuracy equal to 91.67%. The RF model achieved a slightly lower average accuracy (88.89%), which demonstrated the lowest variability. Testing on a new dataset revealed all models performed well, with ANN and SVM models classified all test set instances correctly, while the RF and LR models achieved 91.68% accuracy. These results highlight the superior generalization and effectiveness of the ANN and SVM models in guiding ART decisions.
- Klíčová slova
- Artificial neural network, assisted reproductive technology, embryo transfer, infertility, multi-criteria decision aiding, number of embryos,
- MeSH
- asistovaná reprodukce MeSH
- dospělí MeSH
- infertilita terapie diagnóza MeSH
- lidé MeSH
- neuronové sítě MeSH
- přenos embrya * metody MeSH
- strojové učení * MeSH
- support vector machine MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH