Machine Learning-Based Plant Detection Algorithms to Automate Counting Tasks Using 3D Canopy Scans

. 2021 Dec 01 ; 21 (23) : . [epub] 20211201

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34884027

Grantová podpora
2019B0009 - Life Sciences 4.0 Czech University of Life Sciences Prague
CZ.02.2.69/0.0/0.0/16_027/0008366 Czech University of Life Sciences Prague
● Early Career Research Award from Department of Science and Technology Government of India

This study tested whether machine learning (ML) methods can effectively separate individual plants from complex 3D canopy laser scans as a prerequisite to analyzing particular plant features. For this, we scanned mung bean and chickpea crops with PlantEye (R) laser scanners. Firstly, we segmented the crop canopies from the background in 3D space using the Region Growing Segmentation algorithm. Then, Convolutional Neural Network (CNN) based ML algorithms were fine-tuned for plant counting. Application of the CNN-based (Convolutional Neural Network) processing architecture was possible only after we reduced the dimensionality of the data to 2D. This allowed for the identification of individual plants and their counting with an accuracy of 93.18% and 92.87% for mung bean and chickpea plants, respectively. These steps were connected to the phenotyping pipeline, which can now replace manual counting operations that are inefficient, costly, and error-prone. The use of CNN in this study was innovatively solved with dimensionality reduction, addition of height information as color, and consequent application of a 2D CNN-based approach. We found there to be a wide gap in the use of ML on 3D information. This gap will have to be addressed, especially for more complex plant feature extractions, which we intend to implement through further research.

Zobrazit více v PubMed

Tardieu F., Cabrera-Bosquet L., Pridmore T., Bennett M. Plant phenomics, from sensors to knowledge. Curr. Biol. 2017;27:R770–R783. doi: 10.1016/j.cub.2017.05.055. PubMed DOI

Li L., Zhang Q., Huang D. A Review of Imaging Techniques for Plant Phenotyping. Sensors. 2014;14:20078–20111. doi: 10.3390/s141120078. PubMed DOI PMC

Pommier C., Garnett T., Lawrence-Dill C.J., Pridmore T., Watt M., Pieruschka R., Ghamkhar K. Editorial: Phenotyping; From Plant, to Data, to Impact and Highlights of the International Plant Phenotyping Symposium-IPPS 2018. Front. Plant Sci. 2020;11:1907. doi: 10.3389/fpls.2020.618342. PubMed DOI PMC

Kholová J., Urban M.O., Cock J., Arcos J., Arnaud E., Aytekin D., Azevedo V., Barnes A.P., Ceccarelli S., Chavarriaga P., et al. In pursuit of a better world: Crop improvement and the CGIAR. J. Exp. Bot. 2021;72:5158–5179. doi: 10.1093/jxb/erab226. PubMed DOI PMC

Vadez V., Kholová J., Hummel G., Zhokhavets U., Gupta S.K., Hash C.T. LeasyScan: A novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. J. Exp. Bot. 2015;66:5581–5593. doi: 10.1093/jxb/erv251. PubMed DOI PMC

Furbank R.T., Tester M. Phenomics—Technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16:635–644. doi: 10.1016/j.tplants.2011.09.005. PubMed DOI

Brown T.B., Cheng R., Sirault X.R., Rungrat T., Murray K.D., Trtilek M., Furbank R.T., Badger M., Pogson B.J., Borevitz J.O. TraitCapture: Genomic and environment modelling of plant phenomic data. Curr. Opin. Plant. Biol. 2014;18:73–79. doi: 10.1016/j.pbi.2014.02.002. PubMed DOI

Virlet N., Sabermanesh K., Sadeghi-Tehran P., Hawkesford M.J. Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Funct. Plant Biol. 2016;44:143–153. doi: 10.1071/FP16163. PubMed DOI

Fiorani F., Schurr U. Future Scenarios for Plant Phenotyping. Annu. Rev. Plant Biol. 2013;64:267–291. doi: 10.1146/annurev-arplant-050312-120137. PubMed DOI

Tardieu F., Hammer G. Designing crops for new challenges. Eur. J. Agron. 2012;42:1–2. doi: 10.1016/j.eja.2012.05.006. DOI

Tardieu F., Simonneau T., Muller B. The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach. Annu. Rev. Plant Biol. 2018;69:733–759. doi: 10.1146/annurev-arplant-042817-040218. PubMed DOI

Kholová J., Murugesan T., Kaliamoorthy S., Malayee S., Baddam R., Hammer G.L., McLean G., Deshpande S., Hash C.T., Craufurd P.Q., et al. Modelling the effect of plant water use traits on yield and stay-green expression in sorghum. Funct. Plant Biol. 2014;41:1019–1034. doi: 10.1071/FP13355. PubMed DOI

Sivasakthi K., Thudi M., Tharanya M., Kale S.M., Kholová J., Halime M.H., Jaganathan D., Baddam R., Thirunalasundari T., Gaur P.M., et al. Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biol. 2018;18:29. doi: 10.1186/s12870-018-1245-1. PubMed DOI PMC

Sivasakthi K., Marques E., Kalungwana N., Carrasquilla-Garcia N., Chang P.L., Bergmann E.M., Bueno E., Cordeiro M., Sani S.G.A., Udupa S.M., et al. Functional Dissection of the Chickpea (Cicer arietinum L.) Stay-Green Phenotype Associated with Molecular Variation at an Ortholog of Mendel’s I Gene for Cotyledon Color: Implications for Crop Production and Carotenoid Biofortification. Int. J. Mol. Sci. 2019;20:5562. doi: 10.3390/ijms20225562. PubMed DOI PMC

Tharanya M., Kholova J., Sivasakthi K., Seghal D., Hash C.T., Raj B., Srivastava R.K., Baddam R., Thirunalasundari T., Yadav R., et al. Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum L. R.Br.) Theor. Appl. Genet. 2018;131:1509–1529. doi: 10.1007/s00122-018-3094-6. PubMed DOI

Kar S., Garin V., Kholová J., Vadez V., Durbha S.S., Tanaka R., Iwata H., Urban M.O., Adinarayana J. SpaTemHTP: A Data Analysis Pipeline for Efficient Processing and Utilization of Temporal High-Throughput Phenotyping Data. Front. Plant Sci. 2020;11:552509. doi: 10.3389/fpls.2020.552509. PubMed DOI PMC

Kar S., Tanaka R., Korbu L.B., Kholová J., Iwata H., Durbha S.S., Adinarayana J., Vadez V. Automated discretization of ‘transpiration restriction to increasing VPD’ features from outdoors high-throughput phenotyping data. Plant Methods. 2020;16:140. doi: 10.1186/s13007-020-00680-8. PubMed DOI PMC

Fanourakis D., Briese C., Max J.F., Kleinen S., Putz A., Fiorani F., Ulbrich A., Schurr U. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture. Plant Methods. 2014;10:9. doi: 10.1186/1746-4811-10-9. PubMed DOI PMC

Pound M.P., Atkinson J., Townsend A.J., Wilson M., Griffiths M., Jackson A., Bulat A., Tzimiropoulos G., Wells D., Murchie E., et al. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. GigaScience. 2017;6:gix083. doi: 10.1093/gigascience/gix083. PubMed DOI PMC

Grinblat G.L., Uzal L.C., Larese M.G., Granitto P. Deep learning for plant identification using vein morphological patterns. Comput. Electron. Agric. 2016;127:418–424. doi: 10.1016/j.compag.2016.07.003. DOI

Sun Y., Liu Y., Wang G., Zhang H. Deep Learning for Plant Identification in Natural Environment. Comput. Intell. Neurosci. 2017;2017:7361042. doi: 10.1155/2017/7361042. PubMed DOI PMC

Guerrero J., Pajares G., Montalvo M., Romeo J., Guijarro M. Support Vector Machines for crop/weeds identification in maize fields. Expert Syst. Appl. 2012;39:11149–11155. doi: 10.1016/j.eswa.2012.03.040. DOI

Tellaeche A., Burgos-Artizzu X.P., Pajares G., Ribeiro A. A vision-based method for weeds identification through the Bayesian decision theory. Pattern Recognit. 2008;41:521–530. doi: 10.1016/j.patcog.2007.07.007. DOI

Sakamoto T., Gitelson A.A., Nguy-Robertson A.L., Arkebauer T.J., Wardlow B.D., Suyker A.E., Verma S.B., Shibayama M. An alternative method using digital cameras for continuous monitoring of crop status. Agric. For. Meteorol. 2012;154:113–126. doi: 10.1016/j.agrformet.2011.10.014. DOI

Vega F.A., Carvajal-Ramírez F., Pérez-Saiz M., Rosúa F.O. Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosyst. Eng. 2015;132:19–27. doi: 10.1016/j.biosystemseng.2015.01.008. DOI

Yeh Y.-H.F., Lai T.-C., Liu T.-Y., Liu C.-C., Chung W.-C., Lin T.-T. An automated growth measurement system for leafy vegetables. Biosyst. Eng. 2014;117:43–50. doi: 10.1016/j.biosystemseng.2013.08.011. DOI

Gong A., Yu J., He Y., Qiu Z. Citrus yield estimation based on images processed by an Android mobile phone. Biosyst. Eng. 2013;115:162–170. doi: 10.1016/j.biosystemseng.2013.03.009. DOI

Payne A., Walsh K., Subedi P., Jarvis D. Estimation of mango crop yield using image analysis—Segmentation method. Comput. Electron. Agric. 2013;91:57–64. doi: 10.1016/j.compag.2012.11.009. DOI

Polder G., van der Heijden G.W., van Doorn J., Baltissen T.A. Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision. Biosyst. Eng. 2014;117:35–42. doi: 10.1016/j.biosystemseng.2013.05.010. DOI

Pourreza A., Lee W.S., Etxeberria E., Banerjee A. An evaluation of a vision-based sensor performance in Huanglongbing disease identification. Biosyst. Eng. 2015;130:13–22. doi: 10.1016/j.biosystemseng.2014.11.013. DOI

Valiente-González J.M., Andreu-García G., Potter P., Rodas-Jordá A. Automatic corn (Zea mays) kernel inspection system using novelty detection based on principal component analysis. Biosyst. Eng. 2014;117:94–103. doi: 10.1016/j.biosystemseng.2013.09.003. DOI

Pavlíček J., Jarolímek J., Jarolímek J., Pavlíčková P., Dvořák S., Pavlík J., Hanzlík P. Automated Wildlife Recognition. Agris-Line Pap. Econ. Inform. 2018;10:51–60. doi: 10.7160/aol.2018.100105. DOI

Kamilaris A., Prenafeta-Boldú F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018;147:70–90. doi: 10.1016/j.compag.2018.02.016. DOI

Itakura K., Hosoi F. Automatic individual tree detection and canopy segmentation from three-dimensional point cloud images obtained from ground-based lidar. J. Agric. Meteorol. 2018;74:109–113. doi: 10.2480/agrmet.D-18-00012. DOI

Malambo L., Popescu S., Horne D., Pugh N., Rooney W. Automated detection and measurement of individual sorghum panicles using density-based clustering of terrestrial lidar data. ISPRS J. Photogramm. Remote Sens. 2019;149:1–13. doi: 10.1016/j.isprsjprs.2018.12.015. DOI

Weiss U., Biber P. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robot. Auton. Syst. 2011;59:265–273. doi: 10.1016/j.robot.2011.02.011. DOI

Ugarriza L.G., Saber E., Vantaram S.R., Amuso V., Shaw M., Bhaskar R. Automatic Image Segmentation by Dynamic Region Growth and Multiresolution Merging. IEEE Trans. Image Process. 2009;18:2275–2288. doi: 10.1109/TIP.2009.2025555. PubMed DOI

Zeineldin R.A., El-Fishawy N.A. A Survey of RANSAC enhancements for Plane Detection in 3D Point Clouds. Menoufia J. Electron. Eng. Res. 2017;26:519–537. doi: 10.21608/mjeer.2017.63627. DOI

Rusu R.B. Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. KI Künstliche Intell. 2010;24:345–348. doi: 10.1007/s13218-010-0059-6. DOI

Ren S., He K., Girshick R., Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017;39:1137–1149. doi: 10.1109/TPAMI.2016.2577031. PubMed DOI

Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke V., Rabinovich A. Going deeper with convolutions; Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; Boston, MA, USA. 7–12 June 2015.

Maturana D., Scherer S. VoxNet: VoxNet: A 3D convolutional neural network for real-time object recognition; Proceedings of the IEEE International Conference on Intelligent Robots and Systems; Hamburg, Germany. 25 September–2 October 2015.

Kim C., Lee J., Han T., Kim Y.-M. A hybrid framework combining background subtraction and deep neural networks for rapid person detection. J. Big Data. 2018;5:22. doi: 10.1186/s40537-018-0131-x. DOI

Mohamed S.S., Tahir N.M., Adnan R. Background modelling and background subtraction performance for object detection; Proceedings of the 2010 6th International Colloquium on Signal Processing and Its Applications (CSPA 2010); Malacca, Malaysia. 21–23 May 2010.

Chen S., Zheng L., Zhang Y., Sun Z., Xu K. VERAM: Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture. IEEE Trans. Vis. Comput. Graph. 2019;25:3244–3257. doi: 10.1109/TVCG.2018.2866793. PubMed DOI

Qi C.R., Su H., Mo K., Guibas L.J. Pointnet: Deep learning on point sets for 3D classification and segmentation; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Honolulu, HI, USA. 21–26 July 2017.

Yavartanoo M., Kim E.Y., Lee K.M. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Springer; Berlin/Heidelberg, Germany: 2019. SPNet: Deep 3D object classification and retrieval using stereographic projection.

Xie Y., Tian J., Zhu X.X. Linking Points with Labels in 3D: A Review of Point Cloud Semantic Segmentation. IEEE Geosci. Remote Sens. Mag. 2020;8:38–59. doi: 10.1109/MGRS.2019.2937630. DOI

Ioffe S., Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift; Proceedings of the 32nd International Conference on Machine Learning (ICML); Lille, France. 7–9 July 2015.

Szegedy C., Vanhoucke V., Ioe S., Shlens J., Wojna Z. Rethinking the inception architecture for computer vision; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Las Vegas, NV, USA. 27–30 June 2016; pp. 2818–2826.

He K., Zhang X.Y., Ren S.Q., Sun J. Deep residual learning for image recognition; Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; Las Vegas, NV, USA. 27–30 June 2016.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...