Mitochondrial inheritance
Dotaz
Zobrazit nápovědu
BACKGROUND: The presence of mitochondria is a distinguishing feature between prokaryotic and eukaryotic cells. It is currently accepted that the evolutionary origin of mitochondria coincided with the formation of eukaryotes and from that point control of mitochondrial inheritance was required. Yet, the way the mitochondrial presence has been maintained throughout the eukaryotic cell cycle remains a matter of study. Eukaryotes control mitochondrial inheritance mainly due to the presence of the genetic component; still only little is known about the segregation of mitochondria to daughter cells during cell division. Additionally, anaerobic eukaryotic microbes evolved a variety of genomeless mitochondria-related organelles (MROs), which could be theoretically assembled de novo, providing a distinct mechanistic basis for maintenance of stable mitochondrial numbers. Here, we approach this problem by studying the structure and inheritance of the protist Giardia intestinalis MROs known as mitosomes. RESULTS: We combined 2D stimulated emission depletion (STED) microscopy and focused ion beam scanning electron microscopy (FIB/SEM) to show that mitosomes exhibit internal segmentation and conserved asymmetric structure. From a total of about forty mitosomes, a small, privileged population is harnessed to the flagellar apparatus, and their life cycle is coordinated with the maturation cycle of G. intestinalis flagella. The orchestration of mitosomal inheritance with the flagellar maturation cycle is mediated by a microtubular connecting fiber, which physically links the privileged mitosomes to both axonemes of the oldest flagella pair and guarantees faithful segregation of the mitosomes into the daughter cells. CONCLUSION: Inheritance of privileged Giardia mitosomes is coupled to the flagellar maturation cycle. We propose that the flagellar system controls segregation of mitochondrial organelles also in other members of this supergroup (Metamonada) of eukaryotes and perhaps reflects the original strategy of early eukaryotic cells to maintain this key organelle before mitochondrial fusion-fission dynamics cycle as observed in Metazoa was established.
- Klíčová slova
- Cell cycle, Cytoskeleton, Flagellum, Giardia, Mitochondrial division, Mitochondrial inheritance, Mitosomes, Protist, mitochondrial evolution,
- MeSH
- databáze genetické MeSH
- Giardia lamblia * genetika MeSH
- mitochondriální dynamika MeSH
- mitochondrie genetika MeSH
- organely MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. RESULTS: We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. CONCLUSIONS: Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris.Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.
- MeSH
- DNA rostlinná genetika MeSH
- haplotypy * MeSH
- mitochondriální DNA genetika MeSH
- mitochondriální geny * MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- populační genetika * MeSH
- sekvenční analýza DNA MeSH
- Silene genetika MeSH
- stanovení celkové genové exprese * MeSH
- typy dědičnosti MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- mitochondriální DNA MeSH
Mitochondrial DNA copy number has been previously shown to be elevated with severe and chronic stress, as well as stress-related pathology like Major Depressive Disorder (MDD) and post-traumatic stress disorder (PTSD). While experimental data point to likely recovery of mtDNA copy number changes after the stressful event, time needed for full recovery and whether it can be achieved are still unknown. Further, while it has been shown that stress-related mtDNA elevation affects multiple tissues, its specific consequences for oogenesis and maternal inheritance of mtDNA has never been explored. In this study, we used qPCR to quantify mtDNA copy number in 15 Holocaust survivors and 102 of their second- and third-generation descendants from the Czech Republic, many of whom suffer from PTSD, and compared them to controls in the respective generations. We found no significant difference in mtDNA copy number in the Holocaust survivors compared to controls, whether they have PTSD or not, and no significant elevation in descendants of female Holocaust survivors as compared to descendants of male survivors or controls. Our results showed no evidence of persistence or inheritance of mtDNA changes in Holocaust survivors, though that does not rule out effects in other tissues or mitigating mechanism for such changes.
- Klíčová slova
- Holocaust-psychic trauma, copy number variation, mitochondrial DNA, posttraumatic stress disorder, quantitative PCR,
- Publikační typ
- časopisecké články MeSH
- MeSH
- chloroplasty analýza MeSH
- extrachromozomální dědičnost * MeSH
- infertilita genetika MeSH
- kruhová DNA analýza MeSH
- lidé MeSH
- mitochondriální DNA analýza MeSH
- modely genetické * MeSH
- rostliny genetika MeSH
- sekvence nukleotidů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kruhová DNA MeSH
- mitochondriální DNA MeSH
The mitogenome of the Orthotrichum speciousum (GenBank accession number KM288416) has a total length of 104,747 bp and consist of 40 protein-coding genes, 3 ribosomal RNA (rRNA) and 24 transfer RNA. The gene order is identical to other known moss mitogenomes.
- Klíčová slova
- Bryophytes, Ortotrichum speciosum, mitochondrial genome,
- MeSH
- Bryophyta genetika MeSH
- genom mitochondriální * MeSH
- genom rostlinný MeSH
- mitochondriální DNA genetika MeSH
- mitochondriální geny MeSH
- párování bází genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
The structure of the Aneura pinguis mitochondrial genome (GenBank accession no. NC_026901) is similar to that of closely related Metzgeriales species: it has a total length of 165 603 bp, the base composition of the mitogenome is the following: A (26.2%), C(23.6%), G(23.8%), and T(26.4%). The A. piguis mitochondrial genome contains 69 genes. A complete mitochondrial genome sequence of A. pinguis will help better to understand mitogenome structure and content among Metzgeriales order.
- Klíčová slova
- Aneura, Metzgeriales, cryptic species, mitochondrial genome,
- MeSH
- délka genomu MeSH
- DNA rostlinná MeSH
- fylogeneze * MeSH
- genom mitochondriální * MeSH
- genom rostlinný MeSH
- genomika MeSH
- Marchantiophyta genetika MeSH
- mitochondriální DNA MeSH
- mitochondriální geny * MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- mitochondriální DNA MeSH
The complete mitochondrial genome of the recently discovered beetle family Iberobaeniidae is described and compared with known coleopteran mitogenomes. The mitochondrial sequence was obtained by shotgun metagenomic sequencing using the Illumina Miseq technology and resulted in an average coverage of 130 × and a minimum coverage of 35×. The mitochondrial genome of Iberobaeniidae includes 13 protein-coding genes, 2 rRNAs, 22 tRNAs genes, and 1 putative control region, and showed a unique rearrangement of protein-coding genes. This is the first rearrangement affecting the relative position of protein-coding and ribosomal genes reported for the order Coleoptera.
- Klíčová slova
- Coleoptera, Elateroidea, gene rearrangement, mitochondrial metagenomics, mitochondrion,
- MeSH
- brouci genetika MeSH
- fylogeneze * MeSH
- genom hmyzu MeSH
- genom mitochondriální * MeSH
- genomika MeSH
- mitochondriální DNA MeSH
- mitochondriální geny * MeSH
- pořadí genů MeSH
- sekvenční analýza DNA * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
Arguably, the most bizarre mitochondrial DNA (mtDNA) is that of the euglenozoan eukaryote Diplonema papillatum. The genome consists of numerous small circular chromosomes none of which appears to encode a complete gene. For instance, the cox1 coding sequence is spread out over nine different chromosomes in non-overlapping pieces (modules), which are transcribed separately and joined to a contiguous mRNA by trans-splicing. Here, we examine how many genes are encoded by Diplonema mtDNA and whether all are fragmented and their transcripts trans-spliced. Module identification is challenging due to the sequence divergence of Diplonema mitochondrial genes. By employing most sensitive protein profile search algorithms and comparing genomic with cDNA sequence, we recognize a total of 11 typical mitochondrial genes. The 10 protein-coding genes are systematically chopped up into three to 12 modules of 60-350 bp length. The corresponding mRNAs are all trans-spliced. Identification of ribosomal RNAs is most difficult. So far, we only detect the 3'-module of the large subunit ribosomal RNA (rRNA); it does not trans-splice with other pieces. The small subunit rRNA gene remains elusive. Our results open new intriguing questions about the biochemistry and evolution of mitochondrial trans-splicing in Diplonema.
- MeSH
- chromozomy chemie MeSH
- Euglenozoa genetika MeSH
- genetická transkripce MeSH
- genom mitochondriální * MeSH
- mitochondriální DNA chemie MeSH
- mitochondriální geny * MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- sekvenční analýza DNA MeSH
- trans-splicing * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
- mitochondriální proteiny MeSH
Sequenced genomic data for carnivorous plants are scarce, especially regarding the mitogenomes (MTs) and further studies are crucial to obtain a better understanding of the topic. In this study, we sequenced and characterized the mitochondrial genome of the tuberous carnivorous plant Genlisea tuberosa, being the first of its genus to be sequenced. The genome comprises 729,765 bp, encoding 80 identified genes of which 36 are protein-coding, 40 tRNA, four rRNA genes, and three pseudogenes. An intronic region from the cox1 gene was identified that encodes an endonuclease enzyme that is present in the other sequenced species of Lentibulariaceae. Chloroplast genes (pseudogene and complete) inserted in the MT genome were identified, showing possible horizontal transfer between organelles. In addition, 50 pairs of long repeats from 94 to 274 bp are present, possibly playing an important role in the maintenance of the MT genome. Phylogenetic analysis carried out with 34 coding mitochondrial genes corroborated the positioning of the species listed here within the family. The molecular dynamism in the mitogenome (e.g. the loss or pseudogenization of genes, insertion of foreign genes, the long repeats as well as accumulated mutations) may be reflections of the carnivorous lifestyle where a significant part of cellular energy was shifted for the adaptation of leaves into traps molding the mitochondrial DNA. The sequence and annotation of G. tuberosa's MT will be useful for further studies and serve as a model for evolutionary and taxonomic clarifications of the group as well as improving our comprehension of MT evolution.
- Klíčová slova
- Carnivorous plants, Genomic evolution, Lentibulariaceae, Mitochondrial DNA,
- MeSH
- fylogeneze MeSH
- genom mitochondriální * genetika MeSH
- hluchavkotvaré * genetika MeSH
- mitochondriální DNA MeSH
- mitochondriální geny MeSH
- RNA transferová genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální DNA MeSH
- RNA transferová MeSH
Mitochondrial DNA and nonrecombinant parts of Y-chromosome DNA are a great tool for looking at a species' past. They are inherited for generations almost unaffected because they do not participate in recombination; thus, the time of occurrence of each mutation can be estimated based on the average mutation rate. Thanks to this, male and female haplogroups guide confirming events in the distant past (potential centers of domestication, settlement of areas, trade connections) as well as in modern breeding (crossbreeding, confirmation of paternity). This research focuses mainly on the development of domestic sheep and its post-domestication expansion, which has occurred through human trade from one continent to another. So far, five mitochondrial and five Y-chromosome haplogroups and dozens of their haplotypes have been detected in domestic sheep through studies worldwide. Mitochondrial DNA variability is more or less correlated with distance from the domestication center, but variability on the recombinant region of the Y chromosome is not. According to available data, central China shows the highest variability of male haplogroups and haplotypes.
- Klíčová slova
- Y chromosome haplotypes, domestication, matrilineal inheritance, mitochondrial haplogroups, patrilineal inheritance,
- MeSH
- chromozom Y genetika MeSH
- domestikace * MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- haplotypy genetika MeSH
- mitochondriální DNA genetika MeSH
- ovce genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mitochondriální DNA MeSH