cloud computing use Dotaz Zobrazit nápovědu
Nowadays, biomedicine is characterised by a growing need for processing of large amounts of data in real time. This leads to new requirements for information and communication technologies (ICT). Cloud computing offers a solution to these requirements and provides many advantages, such as cost savings, elasticity and scalability of using ICT. The aim of this paper is to explore the concept of cloud computing and the related use of this concept in the area of biomedicine. Authors offer a comprehensive analysis of the implementation of the cloud computing approach in biomedical research, decomposed into infrastructure, platform and service layer, and a recommendation for processing large amounts of data in biomedicine. Firstly, the paper describes the appropriate forms and technological solutions of cloud computing. Secondly, the high-end computing paradigm of cloud computing aspects is analysed. Finally, the potential and current use of applications in scientific research of this technology in biomedicine is discussed.
- Klíčová slova
- application in biomedicine, cloud computing use, infrastructure solution,
- MeSH
- biomedicínský výzkum * ekonomika přístrojové vybavení metody MeSH
- cloud computing * MeSH
- lékařská informatika * ekonomika přístrojové vybavení metody MeSH
- lékařství * metody MeSH
- objevování léků metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In healthcare, there are rapid emergency response systems that necessitate real-time actions where speed and efficiency are critical; this may suffer as a result of cloud latency because of the delay caused by the cloud. Therefore, fog computing is utilized in real-time healthcare applications. There are still limitations in response time, latency, and energy consumption. Thus, a proper fog computing architecture and good task scheduling algorithms should be developed to minimize these limitations. In this study, an Energy-Efficient Internet of Medical Things to Fog Interoperability of Task Scheduling (EEIoMT) framework is proposed. This framework schedules tasks in an efficient way by ensuring that critical tasks are executed in the shortest possible time within their deadline while balancing energy consumption when processing other tasks. In our architecture, Electrocardiogram (ECG) sensors are used to monitor heart health at home in a smart city. ECG sensors send the sensed data continuously to the ESP32 microcontroller through Bluetooth (BLE) for analysis. ESP32 is also linked to the fog scheduler via Wi-Fi to send the results data of the analysis (tasks). The appropriate fog node is carefully selected to execute the task by giving each node a special weight, which is formulated on the basis of the expected amount of energy consumed and latency in executing this task and choosing the node with the lowest weight. Simulations were performed in iFogSim2. The simulation outcomes show that the suggested framework has a superior performance in reducing the usage of energy, latency, and network utilization when weighed against CHTM, LBS, and FNPA models.
- Klíčová slova
- Cardiovascular Disease, ECG sensors, fog computing, health monitoring system, internet of medical things, low-latency, scheduling algorithms, task scheduling,
- MeSH
- algoritmy * MeSH
- cloud computing * MeSH
- elektrokardiografie MeSH
- internet MeSH
- počítačová simulace MeSH
- Publikační typ
- časopisecké články MeSH
Many hospitals and medical clinics have been using a wearable sensor in its health care system because the wearable sensor, which is able to measure the patients' biometric information, has been developed to analyze their patients remotely. The measured information is saved to a server in a medical center, and the server keeps the medical information, which also involves personal information, on a cloud system. The server and network devices are used by connecting each other, and sensitive medical records are dealt with remotely. However, these days, the attackers, who try to attack the server or the network systems, are increasing. In addition, the server and the network system have a weak protection and security policy against the attackers. In this paper, it is suggested that security compliance of medical contents should be followed to improve the level of security. As a result, the medical contents are kept safely.
- MeSH
- algoritmy MeSH
- ambulantní monitorování přístrojové vybavení MeSH
- biometrie MeSH
- chorobopisy MeSH
- cloud computing * MeSH
- důvěrnost informací MeSH
- elektronické zdravotní záznamy MeSH
- internet MeSH
- lékařská informatika přístrojové vybavení MeSH
- lidé MeSH
- poskytování zdravotní péče MeSH
- programovací jazyk MeSH
- sběr dat MeSH
- ukládání a vyhledávání informací metody MeSH
- zabezpečení počítačových systémů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The technologies of the Internet of Things (IoT) have an increasing influence on our daily lives. The expansion of the IoT is associated with the growing number of IoT devices that are connected to the Internet. As the number of connected devices grows, the demand for speed and data volume is also greater. While most IoT network technologies use cloud computing, this solution becomes inefficient for some use-cases. For example, suppose that a company that uses an IoT network with several sensors to collect data within a production hall. The company may require sharing only selected data to the public cloud and responding faster to specific events. In the case of a large amount of data, the off-loading techniques can be utilized to reach higher efficiency. Meeting these requirements is difficult or impossible for solutions adopting cloud computing. The fog computing paradigm addresses these cases by providing data processing closer to end devices. This paper proposes three possible network architectures that adopt fog computing for LoRaWAN because LoRaWAN is already deployed in many locations and offers long-distance communication with low-power consumption. The architecture proposals are further compared in simulations to select the optimal form in terms of total service time. The resulting optimal communication architecture could be deployed to the existing LoRaWAN with minimal cost and effort of the network operator.
- Klíčová slova
- LoRaWAN, cloud computing, fog computing, internet of things, network architecture, simulation,
- Publikační typ
- časopisecké články MeSH
This article deals with a unique, new powertrain diagnostics platform at the level of a large number of EU25 inspection stations. Implemented method uses emission measurement data and additional data from significant sample of vehicles. An original technique using machine learning that uses 9 static testing points (defined by constant engine load and constant engine speed), volume of engine combustion chamber, EURO emission standard category, engine condition state coefficient and actual mileage is applied. An example for dysfunction detection using exhaust emission analyses is described in detail. The test setup is also described, along with the procedure for data collection using a Mindsphere cloud data processing platform. Mindsphere is a core of the new Platform as a Service (Paas) for data processing from multiple testing facilities. An evaluation on a fleet level which used quantile regression method is implemented. In this phase of the research, real data was used, as well as data defined on the basis of knowledge of the manifestation of internal combustion engine defects. As a result of the application of the platform and the evaluation method, it is possible to classify combustion engine dysfunctions. These are defects that cannot be detected by self-diagnostic procedures for cars up to the EURO 6 level.
- Klíčová slova
- PaaS, cloud computing, exhaust emission testing and evaluation, new emission measurement methods, quantile regression,
- MeSH
- benzin analýza MeSH
- cloud computing MeSH
- strojové učení * MeSH
- výfukové emise vozidel * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzin MeSH
- výfukové emise vozidel * MeSH
The academic de.NBI Cloud offers compute resources for life science research in Germany. At the beginning of 2017, de.NBI Cloud started to implement a federated cloud consisting of five compute centers, with the aim of acting as one resource to their users. A federated cloud introduces multiple challenges, such as a central access and project management point, a unified account across all cloud sites and an interchangeable project setup across the federation. In order to implement the federation concept, de.NBI Cloud integrated with the ELIXIR authentication and authorization infrastructure system (ELIXIR AAI) and in particular Perun, the identity and access management system of ELIXIR. The integration solves the mentioned challenges and represents a backbone, connecting five compute centers which are based on OpenStack and a web portal for accessing the federation.This article explains the steps taken and software components implemented for setting up a federated cloud based on the collaboration between de.NBI Cloud and ELIXIR AAI. Furthermore, the setup and components that are described are generic and can therefore be used for other upcoming or existing federated OpenStack clouds in Europe.
- Klíčová slova
- Authentication, Authorization, Cloud Computing, ELIXIR, Life Sciences, OpenID Connect, de.NBI, de.NBI Cloud,
- MeSH
- biologické vědy * MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Německo MeSH
META-pipe is a complete service for the analysis of marine metagenomic data. It provides assembly of high-throughput sequence data, functional annotation of predicted genes, and taxonomic profiling. The functional annotation is computationally demanding and is therefore currently run on a high-performance computing cluster in Norway. However, additional compute resources are necessary to open the service to all ELIXIR users. We describe our approach for setting up and executing the functional analysis of META-pipe on additional academic and commercial clouds. Our goal is to provide a powerful analysis service that is easy to use and to maintain. Our design therefore uses a distributed architecture where we combine central servers with multiple distributed backends that execute the computationally intensive jobs. We believe our experiences developing and operating META-pipe provides a useful model for others that plan to provide a portal based data analysis service in ELIXIR and other organizations with geographically distributed compute and storage resources.
- Klíčová slova
- AAI federation, Amazon Web Services, Apache Spark, EGI Federated Cloud, ELIXIR, META-pipe, OpenStack, Portability,
- Publikační typ
- časopisecké články MeSH
Brain stimulation has emerged as an effective treatment for a wide range of neurological and psychiatric diseases. Parkinson's disease, epilepsy, and essential tremor have FDA indications for electrical brain stimulation using intracranially implanted electrodes. Interfacing implantable brain devices with local and cloud computing resources have the potential to improve electrical stimulation efficacy, disease tracking, and management. Epilepsy, in particular, is a neurological disease that might benefit from the integration of brain implants with off-the-body computing for tracking disease and therapy. Recent clinical trials have demonstrated seizure forecasting, seizure detection, and therapeutic electrical stimulation in patients with drug-resistant focal epilepsy. In this paper, we describe a next-generation epilepsy management system that integrates local handheld and cloud-computing resources wirelessly coupled to an implanted device with embedded payloads (sensors, intracranial EEG telemetry, electrical stimulation, classifiers, and control policy implementation). The handheld device and cloud computing resources can provide a seamless interface between patients and physicians, and realtime intracranial EEG can be used to classify brain state (wake/sleep, preseizure, and seizure), implement control policies for electrical stimulation, and track patient health. This system creates a flexible platform in which low demand analytics requiring fast response times are embedded in the implanted device and more complex algorithms are implemented in offthebody local and distributed cloud computing environments. The system enables tracking and management of epileptic neural networks operating over time scales ranging from milliseconds to months.
- Klíčová slova
- Epilepsy, deep brain stimulation, distributed computing, implantable devices, seizure detection, seizure prediction,
- Publikační typ
- časopisecké články MeSH
This paper proposes a solution for ensuring the security of IoT devices in the cloud environment by protecting against distributed denial-of-service (DDoS) and false data injection attacks. The proposed solution is based on the integration of simple network management protocol (SNMP), Kullback-Leibler distance (KLD), access control rules (ACL), and moving target defense (MTD) techniques. The SNMP and KLD techniques are used to detect DDoS and false data sharing attacks, while the ACL and MTD techniques are applied to mitigate these attacks by hardening the target and reducing the attack surface. The effectiveness of the proposed framework is validated through experimental simulations on the Amazon Web Service (AWS) platform, which shows a significant reduction in attack probabilities and delays. The integration of IoT and cloud technologies is a powerful combination that can deliver customized and critical solutions to major business vendors. However, ensuring the confidentiality and security of data among IoT devices, storage, and access to the cloud is crucial to maintaining trust among internet users. This paper demonstrates the importance of implementing robust security measures to protect IoT devices in the cloud environment and highlights the potential of the proposed solution in protecting against DDoS and false data injection attacks.
- Klíčová slova
- Amazon Web Service (AWS), IoT, access control list, cloud computing, cloud security, moving target defense (MTD), simple network monitoring protocol,
- Publikační typ
- časopisecké články MeSH
Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations.