Jasmonates (JAs) are signals in plant stress responses and development. One of the first observed and prominent responses to JAs is the induction of biosynthesis of different groups of secondary compounds. Among them are nicotine, isoquinolines, glucosinolates, anthocyanins, benzophenanthridine alkaloids, artemisinin, and terpenoid indole alkaloids (TIAs), such as vinblastine. This brief review describes modes of action of JAs in the biosynthesis of anthocyanins, nicotine, TIAs, glucosinolates and artemisinin. After introducing JA biosynthesis, the central role of the SCFCOI1-JAZ co-receptor complex in JA perception and MYB-type and MYC-type transcription factors is described. Brief comments are provided on primary metabolites as precursors of secondary compounds. Pathways for the biosynthesis of anthocyanin, nicotine, TIAs, glucosinolates and artemisinin are described with an emphasis on JA-dependent transcription factors, which activate or repress the expression of essential genes encoding enzymes in the biosynthesis of these secondary compounds. Applied aspects are discussed using the biotechnological formation of artemisinin as an example of JA-induced biosynthesis of secondary compounds in plant cell factories.
- MeSH
- anthokyaniny biosyntéza MeSH
- artemisininy metabolismus MeSH
- biologické modely MeSH
- biosyntetické dráhy MeSH
- cyklopentany metabolismus MeSH
- glukosinoláty biosyntéza MeSH
- metabolické inženýrství MeSH
- nikotin biosyntéza MeSH
- oxylipiny metabolismus MeSH
- regulátory růstu rostlin biosyntéza metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny genetika metabolismus MeSH
- sekologanin-tryptaminové alkaloidy metabolismus MeSH
- signální transdukce MeSH
- transkripční faktory metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: The use of homologous recombination to precisely modify plant genomes has been challenging, due to the lack of efficient methods for delivering DNA repair templates to plant cells. Even with the advent of sequence-specific nucleases, which stimulate homologous recombination at predefined genomic sites by creating targeted DNA double-strand breaks, there are only a handful of studies that report precise editing of endogenous genes in crop plants. More efficient methods are needed to modify plant genomes through homologous recombination, ideally without randomly integrating foreign DNA. RESULTS: Here, we use geminivirus replicons to create heritable modifications to the tomato genome at frequencies tenfold higher than traditional methods of DNA delivery (i.e., Agrobacterium). A strong promoter was inserted upstream of a gene controlling anthocyanin biosynthesis, resulting in overexpression and ectopic accumulation of pigments in tomato tissues. More than two-thirds of the insertions were precise, and had no unanticipated sequence modifications. Both TALENs and CRISPR/Cas9 achieved gene targeting at similar efficiencies. Further, the targeted modification was transmitted to progeny in a Mendelian fashion. Even though donor molecules were replicated in the vectors, no evidence was found of persistent extra-chromosomal replicons or off-target integration of T-DNA or replicon sequences. CONCLUSIONS: High-frequency, precise modification of the tomato genome was achieved using geminivirus replicons, suggesting that these vectors can overcome the efficiency barrier that has made gene targeting in plants challenging. This work provides a foundation for efficient genome editing of crop genomes without the random integration of foreign DNA.
- MeSH
- anthokyaniny biosyntéza genetika MeSH
- CRISPR-Cas systémy genetika MeSH
- DNA bakterií genetika MeSH
- dvouřetězcové zlomy DNA MeSH
- Geminiviridae genetika MeSH
- genetické inženýrství MeSH
- genom rostlinný * MeSH
- genový targeting MeSH
- homologní rekombinace genetika MeSH
- oprava DNA genetika MeSH
- Solanum lycopersicum genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Geneticky modifikované, barevně pozměněné odrůdy nejznámějších řezaných květin s prodlouženou délkou života jsou komerčně dostupné již několik let. V následujícím článku je nastíněnstručný popis transgenní manipulace s anthokyaninovou a ethylenovou biosyntetickou dráhou dvou hlavních okrasných květin, karafiátu a růže. Anthokyaninová dráha umožňuje okrasným květinám produkovat modré barvivo, delfinidin. Ethylen je rostlinným hormonem startujícím vadnutí květin. Využitím nových biotechnologických metod tak mohou producenti vyvinout nové odrůdy s modrou barvou květu a prodlouženou trvanlivostí.
Genetically-modified, colour-altered varieties of the important cut-flower crop carnation have now been commercially available for near y ten years. The following article outlines a brief description of the transgenic manipulation of the anthocyanin biosynthesis and ethylene pathways of two major ornamental flowers, the carnation and the rose. The anthocyanin pathways allow ornamental flowers to produce a blue pigment, delphinidin. Ethylene is a plant hormone that starts wilting of flowers. Using new biotechnology techniques the producers can develop new varieties with blue flowers and extension of their longenivity.
- Klíčová slova
- transgenní růže, transgenní karafiát, barevnost květu, anthokyanin, flavonoid, životnost řezaných květů, ethylen, flavonoid- 3',5'-hydroxylasa (F3'-5'H), flavonoid- 3'-hydroxylasa (F3'H), ACC synthasa, ACC oxidasa, dihydroflavon-4-reductasa (DFR),
- MeSH
- anthokyaniny biosyntéza genetika MeSH
- geneticky modifikované organismy MeSH
- geneticky modifikované rostliny MeSH
- regulace genové exprese MeSH
- RNA interference MeSH
- technika přenosu genů MeSH
- transgeny MeSH