-
Something wrong with this record ?
Optimal signal estimation in neuronal models
P. Lansky, P.E. Greenwood
Language English Country United States
Document type Comparative Study
NLK
Medline Complete (EBSCOhost)
from 1997-01-01 to 1 year ago
- MeSH
- Action Potentials physiology MeSH
- Time Factors MeSH
- Entropy MeSH
- Financing, Government MeSH
- Models, Neurological MeSH
- Synaptic Transmission genetics MeSH
- Neural Inhibition MeSH
- Neurons physiology MeSH
- Computer Simulation MeSH
- Poisson Distribution MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Comparative Study MeSH
We study optimal estimation of a signal in parametric neuronal models on the basis of interspike interval data. Fisher information is the inverse asymptotic variance of the best estimator. Its dependence on the parameter value indicates accuracy of estimation. Our models assume that the input signal is estimated from neuronal output interspike interval data where the frequency transfer function is sigmoidal. If the coefficient of variation of the interspike interval is constant with respect to the signal, the Fisher information is unimodal, and its maximum for the most estimable signal can be found. We obtain a general result and compare the signal producing maximal Fisher information with the inflection point of the sigmoidal transfer function in several basic neuronal models.
- 000
- 02412naa 2200421 a 4500
- 001
- bmc07500398
- 003
- CZ-PrNML
- 005
- 20111210120829.0
- 008
- 070628s2005 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Lánský, Petr $7 xx0062306
- 245 10
- $a Optimal signal estimation in neuronal models / $c P. Lansky, P.E. Greenwood
- 314 __
- $a Institute of Physiology, Academy of Sciences of Czech Republic, 142 20 Prague 4
- 520 9_
- $a We study optimal estimation of a signal in parametric neuronal models on the basis of interspike interval data. Fisher information is the inverse asymptotic variance of the best estimator. Its dependence on the parameter value indicates accuracy of estimation. Our models assume that the input signal is estimated from neuronal output interspike interval data where the frequency transfer function is sigmoidal. If the coefficient of variation of the interspike interval is constant with respect to the signal, the Fisher information is unimodal, and its maximum for the most estimable signal can be found. We obtain a general result and compare the signal producing maximal Fisher information with the inflection point of the sigmoidal transfer function in several basic neuronal models.
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a modely neurologické $7 D008959
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a entropie $7 D019277
- 650 _2
- $a nervový útlum $7 D009433
- 650 _2
- $a Poissonovo rozdělení $7 D016012
- 650 _2
- $a nervový přenos $x genetika $7 D009435
- 650 _2
- $a časové faktory $7 D013997
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a financování vládou $7 D005380
- 655 _2
- $a srovnávací studie $7 D003160
- 700 1_
- $a Greenwood, P. E.
- 773 0_
- $w MED00003480 $t Neural computation $g Roč. 17, č. 10 (2005), s. 2240-2257 $x 0899-7667
- 910 __
- $y 1 $a ABA008 $b x
- 990 __
- $a 20070628074652 $b ABA008
- 991 __
- $a 20080204101740 $b ABA008
- 999 __
- $a ok $b bmc $g 616013 $s 468445
- BAS __
- $a 3
- BMC __
- $a 2005 $b 17 $c 10 $d 2240-2257 $i 0899-7667 $m Neural computation $x MED00003480
- LZP __
- $a 2007-2/jtjt