-
Je něco špatně v tomto záznamu ?
Chaotic dynamics in simple neuronal systems: theory and applications
Andrey, L.
Jazyk angličtina Země Spojené státy americké
- MeSH
- financování organizované MeSH
- lidé MeSH
- nelineární dynamika MeSH
- neurony fyziologie MeSH
- Saimiri fyziologie MeSH
- teoretické modely MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
The ubiquitous feature of the nervous system of wide spread occurrence of complex dynamics behaviour is treated. The cardinal question concerning the nature of generators of such complex behaviour, namely if it is ad hoc random or deterministic but strongly nonlinear, is analyzed. It is proved analytically that the discrete dynamics of single neurons with the sigmoidal transfer function is potentially chaotic. As the by-product the functional gain-threshold mechanism in neurons is derived. This allows for the new interpretations of famous experiments by Miyashita on squirell monkeys. Then it is shown that the continuous dynamics of the neural circuits of two-three neurons are endowed with the potentiality of chaotic firing, too. Finally, it will be argued that the classical dogma of stochastic or the ad hoc random neural coding can be taken as the limiting case of presenting new approach of deterministic or chaotic paradigm.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc07520122
- 003
- CZ-PrNML
- 005
- 20111210131014.0
- 008
- 090326s2006 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Andrey, Ladislav $7 xx0075489
- 245 10
- $a Chaotic dynamics in simple neuronal systems: theory and applications / $c Andrey, L.
- 314 __
- $a Academy of Sciences, Prague. andre@cs.cas.cz
- 520 9_
- $a The ubiquitous feature of the nervous system of wide spread occurrence of complex dynamics behaviour is treated. The cardinal question concerning the nature of generators of such complex behaviour, namely if it is ad hoc random or deterministic but strongly nonlinear, is analyzed. It is proved analytically that the discrete dynamics of single neurons with the sigmoidal transfer function is potentially chaotic. As the by-product the functional gain-threshold mechanism in neurons is derived. This allows for the new interpretations of famous experiments by Miyashita on squirell monkeys. Then it is shown that the continuous dynamics of the neural circuits of two-three neurons are endowed with the potentiality of chaotic firing, too. Finally, it will be argued that the classical dogma of stochastic or the ad hoc random neural coding can be taken as the limiting case of presenting new approach of deterministic or chaotic paradigm.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a teoretické modely $7 D008962
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a nelineární dynamika $7 D017711
- 650 _2
- $a Saimiri $x fyziologie $7 D012453
- 650 _2
- $a financování organizované $7 D005381
- 773 0_
- $w MED00007797 $t Nonlinear dynamics, psychology, and life sciences $g Roč. 10, č. 1 (2006), s. 1-20 $x 1090-0578
- 910 __
- $a ABA008 $b x $y 9
- 990 __
- $a 20090310084605 $b ABA008
- 991 __
- $a 20090716112946 $b ABA008
- 999 __
- $a ok $b bmc $g 637926 $s 490722
- BAS __
- $a 3
- BMC __
- $a 2006 $b 10 $c 1 $d 1-20 $i 1090-0578 $m Nonlinear dynamics, psychology, and life sciences $x MED00007797
- LZP __
- $a 2009-B2/ipme