-
Je něco špatně v tomto záznamu ?
Role of the carbohydrate recognition domains of mouse galectin-4 in oligosaccharide binding and epitope recognition and expression of galectin-4 and galectin-6 in mouse cells and tissues
Marková V, Smetana K Jr, Jeníková G, Láchová J, Krejciríková V, Poplstein M, Fábry M, Brynda J, Alvarez RA, Cummings RD, Maly P.
Jazyk angličtina Země Řecko
NLK
Free Medical Journals
od 2006 do Před 1 rokem
Freely Accessible Science Journals
od 2006
- MeSH
- buňky 3T3 MeSH
- epitopy chemie metabolismus MeSH
- financování organizované MeSH
- galektin 4 genetika chemie MeSH
- galektiny genetika chemie MeSH
- hybridizace in situ metody MeSH
- imunohistochemie MeSH
- komplementární DNA genetika MeSH
- molekulární sekvence - údaje MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- oligosacharidy chemie metabolismus MeSH
- rekombinantní proteiny biosyntéza chemie MeSH
- sacharidové sekvence MeSH
- stanovení celkové genové exprese MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
Galectin-4 and its homologue galectin-6 are members of the tandem-repeat subfamily of monomer divalent galectins. Expression of mouse galectin-4 and galectin-6 by RT-PCR using primers designed to distinguish both galectin transcripts indicates that both are expressed in the small intestine, colon, liver, kidney, spleen and heart and P19X1 cells while only galectin-4 is expressed in BW-5147 and 3T3 cell lines. In situ hybridization confirmed the presence of galectin-4/-6 transcripts in the liver and small intestine. Galectin-4 is expressed in spermatozoons and oocytes and its expression during early mouse emryogenesis appears in 8-cell embryos and remains in later stages, as tested by RT-PCR. To study the role of carbohydrate recognition domains (CRDs) in oligosaccharide binding and epitope recognition, we cloned mouse full-length galectin-4 and galectin-6 cDNA and constructed bacterial expression vectors producing histidin-tagged recombinant galectin-4 and its truncated CRD1 and CRD2 forms. Oligosaccharide binding profile for all recombinant forms was assessed using Glycan Array available through the Consortium for Functional Glycomics. Acquired data indicate that mGalectin-4 binds to alpha-GalNAc and alpha-Gal A and B type structures with or without fucose. While the CRD2 domain has a high specificity and affinity for A type-2 alpha-GalNAc structures, the CRD1 domain has a broader specificity in correlation to the total binding profile. These data suggest that CRD2 might be the dominant binding domain of mouse galectin-4. Mapping of epitopes reactive for biotinylated his-tagged CRD1, CRD2 and mGalectin-4 performed on mouse cryosections showed that all three forms bind to alveolar macrophages, macrophages of red pulp of the spleen and proximal tubuli of the kidney and this binding was inhibited by 5 mM lactose. Interestingly, mGalectin-4, but not CRD forms, binds to the suprabasal layer of squamous epithelium of the tongue, suggesting that the link region also plays an important role in ligand recognition.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc07522364
- 003
- CZ-PrNML
- 005
- 20121203113721.0
- 008
- 090430s2006 gr e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gr
- 100 1_
- $a Marková, Vladimíra $7 xx0094893
- 245 10
- $a Role of the carbohydrate recognition domains of mouse galectin-4 in oligosaccharide binding and epitope recognition and expression of galectin-4 and galectin-6 in mouse cells and tissues / $c Marková V, Smetana K Jr, Jeníková G, Láchová J, Krejciríková V, Poplstein M, Fábry M, Brynda J, Alvarez RA, Cummings RD, Maly P.
- 314 __
- $a Laboratory of Molecular Glycobiology, Department of Recombinant Expression and Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
- 520 9_
- $a Galectin-4 and its homologue galectin-6 are members of the tandem-repeat subfamily of monomer divalent galectins. Expression of mouse galectin-4 and galectin-6 by RT-PCR using primers designed to distinguish both galectin transcripts indicates that both are expressed in the small intestine, colon, liver, kidney, spleen and heart and P19X1 cells while only galectin-4 is expressed in BW-5147 and 3T3 cell lines. In situ hybridization confirmed the presence of galectin-4/-6 transcripts in the liver and small intestine. Galectin-4 is expressed in spermatozoons and oocytes and its expression during early mouse emryogenesis appears in 8-cell embryos and remains in later stages, as tested by RT-PCR. To study the role of carbohydrate recognition domains (CRDs) in oligosaccharide binding and epitope recognition, we cloned mouse full-length galectin-4 and galectin-6 cDNA and constructed bacterial expression vectors producing histidin-tagged recombinant galectin-4 and its truncated CRD1 and CRD2 forms. Oligosaccharide binding profile for all recombinant forms was assessed using Glycan Array available through the Consortium for Functional Glycomics. Acquired data indicate that mGalectin-4 binds to alpha-GalNAc and alpha-Gal A and B type structures with or without fucose. While the CRD2 domain has a high specificity and affinity for A type-2 alpha-GalNAc structures, the CRD1 domain has a broader specificity in correlation to the total binding profile. These data suggest that CRD2 might be the dominant binding domain of mouse galectin-4. Mapping of epitopes reactive for biotinylated his-tagged CRD1, CRD2 and mGalectin-4 performed on mouse cryosections showed that all three forms bind to alveolar macrophages, macrophages of red pulp of the spleen and proximal tubuli of the kidney and this binding was inhibited by 5 mM lactose. Interestingly, mGalectin-4, but not CRD forms, binds to the suprabasal layer of squamous epithelium of the tongue, suggesting that the link region also plays an important role in ligand recognition.
- 650 _2
- $a financování organizované $7 D005381
- 650 _2
- $a buňky 3T3 $7 D016475
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a sacharidové sekvence $7 D002240
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a komplementární DNA $x genetika $7 D018076
- 650 _2
- $a epitopy $x chemie $x metabolismus $7 D000939
- 650 _2
- $a galektin 4 $x genetika $x chemie $7 D037541
- 650 _2
- $a galektiny $x genetika $x chemie $7 D037161
- 650 _2
- $a stanovení celkové genové exprese $7 D020869
- 650 _2
- $a imunohistochemie $7 D007150
- 650 _2
- $a hybridizace in situ $x metody $7 D017403
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a oligosacharidy $x chemie $x metabolismus $7 D009844
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a rekombinantní proteiny $x biosyntéza $x chemie $7 D011994
- 700 1_
- $a Smetana, Karel, $d 1958- $7 jn20000710554
- 700 1_
- $a Jeníková, Gabriela $7 xx0126674
- 700 1_
- $a Láchová, Jitka $7 xx0128692
- 700 1_
- $a Krejčiříková, Veronika $7 xx0128639
- 700 1_
- $a Poplštein, Martin. $7 _BN004510
- 700 1_
- $a Fábry, Milan, $d 1947- $7 xx0049924
- 700 1_
- $a Brynda, Jiří $7 xx0100180
- 700 1_
- $a Alvarez, Richard A. $7 gn_A_00005112
- 700 1_
- $a Cummings, Richard D.
- 700 1_
- $a Malý, Petr $7 xx0128744
- 773 0_
- $w MED00173213 $t International journal of molecular medicine $g Roč. 18, č. 1 (2006), s. 65-76 $x 1107-3756
- 910 __
- $a ABA008 $b x $y 9
- 990 __
- $a 20090310084605 $b ABA008
- 991 __
- $a 20121203113752 $b ABA008
- 999 __
- $a ok $b bmc $g 647117 $s 500067
- BAS __
- $a 3
- BMC __
- $a 2006 $b 18 $c 1 $d 65-76 $m International Journal of Molecular Medicine $x MED00173213
- LZP __
- $a 2009-B3/ipme