• Je něco špatně v tomto záznamu ?

Role of the carbohydrate recognition domains of mouse galectin-4 in oligosaccharide binding and epitope recognition and expression of galectin-4 and galectin-6 in mouse cells and tissues

Marková V, Smetana K Jr, Jeníková G, Láchová J, Krejciríková V, Poplstein M, Fábry M, Brynda J, Alvarez RA, Cummings RD, Maly P.

Jazyk angličtina Země Řecko

Perzistentní odkaz   https://www.medvik.cz/link/bmc07522364
E-zdroje

NLK Free Medical Journals od 2006 do Před 1 rokem
Freely Accessible Science Journals od 2006

Galectin-4 and its homologue galectin-6 are members of the tandem-repeat subfamily of monomer divalent galectins. Expression of mouse galectin-4 and galectin-6 by RT-PCR using primers designed to distinguish both galectin transcripts indicates that both are expressed in the small intestine, colon, liver, kidney, spleen and heart and P19X1 cells while only galectin-4 is expressed in BW-5147 and 3T3 cell lines. In situ hybridization confirmed the presence of galectin-4/-6 transcripts in the liver and small intestine. Galectin-4 is expressed in spermatozoons and oocytes and its expression during early mouse emryogenesis appears in 8-cell embryos and remains in later stages, as tested by RT-PCR. To study the role of carbohydrate recognition domains (CRDs) in oligosaccharide binding and epitope recognition, we cloned mouse full-length galectin-4 and galectin-6 cDNA and constructed bacterial expression vectors producing histidin-tagged recombinant galectin-4 and its truncated CRD1 and CRD2 forms. Oligosaccharide binding profile for all recombinant forms was assessed using Glycan Array available through the Consortium for Functional Glycomics. Acquired data indicate that mGalectin-4 binds to alpha-GalNAc and alpha-Gal A and B type structures with or without fucose. While the CRD2 domain has a high specificity and affinity for A type-2 alpha-GalNAc structures, the CRD1 domain has a broader specificity in correlation to the total binding profile. These data suggest that CRD2 might be the dominant binding domain of mouse galectin-4. Mapping of epitopes reactive for biotinylated his-tagged CRD1, CRD2 and mGalectin-4 performed on mouse cryosections showed that all three forms bind to alveolar macrophages, macrophages of red pulp of the spleen and proximal tubuli of the kidney and this binding was inhibited by 5 mM lactose. Interestingly, mGalectin-4, but not CRD forms, binds to the suprabasal layer of squamous epithelium of the tongue, suggesting that the link region also plays an important role in ligand recognition.

000      
00000naa 2200000 a 4500
001      
bmc07522364
003      
CZ-PrNML
005      
20121203113721.0
008      
090430s2006 gr e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gr
100    1_
$a Marková, Vladimíra $7 xx0094893
245    10
$a Role of the carbohydrate recognition domains of mouse galectin-4 in oligosaccharide binding and epitope recognition and expression of galectin-4 and galectin-6 in mouse cells and tissues / $c Marková V, Smetana K Jr, Jeníková G, Láchová J, Krejciríková V, Poplstein M, Fábry M, Brynda J, Alvarez RA, Cummings RD, Maly P.
314    __
$a Laboratory of Molecular Glycobiology, Department of Recombinant Expression and Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
520    9_
$a Galectin-4 and its homologue galectin-6 are members of the tandem-repeat subfamily of monomer divalent galectins. Expression of mouse galectin-4 and galectin-6 by RT-PCR using primers designed to distinguish both galectin transcripts indicates that both are expressed in the small intestine, colon, liver, kidney, spleen and heart and P19X1 cells while only galectin-4 is expressed in BW-5147 and 3T3 cell lines. In situ hybridization confirmed the presence of galectin-4/-6 transcripts in the liver and small intestine. Galectin-4 is expressed in spermatozoons and oocytes and its expression during early mouse emryogenesis appears in 8-cell embryos and remains in later stages, as tested by RT-PCR. To study the role of carbohydrate recognition domains (CRDs) in oligosaccharide binding and epitope recognition, we cloned mouse full-length galectin-4 and galectin-6 cDNA and constructed bacterial expression vectors producing histidin-tagged recombinant galectin-4 and its truncated CRD1 and CRD2 forms. Oligosaccharide binding profile for all recombinant forms was assessed using Glycan Array available through the Consortium for Functional Glycomics. Acquired data indicate that mGalectin-4 binds to alpha-GalNAc and alpha-Gal A and B type structures with or without fucose. While the CRD2 domain has a high specificity and affinity for A type-2 alpha-GalNAc structures, the CRD1 domain has a broader specificity in correlation to the total binding profile. These data suggest that CRD2 might be the dominant binding domain of mouse galectin-4. Mapping of epitopes reactive for biotinylated his-tagged CRD1, CRD2 and mGalectin-4 performed on mouse cryosections showed that all three forms bind to alveolar macrophages, macrophages of red pulp of the spleen and proximal tubuli of the kidney and this binding was inhibited by 5 mM lactose. Interestingly, mGalectin-4, but not CRD forms, binds to the suprabasal layer of squamous epithelium of the tongue, suggesting that the link region also plays an important role in ligand recognition.
650    _2
$a financování organizované $7 D005381
650    _2
$a buňky 3T3 $7 D016475
650    _2
$a zvířata $7 D000818
650    _2
$a vazebná místa $7 D001665
650    _2
$a sacharidové sekvence $7 D002240
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a komplementární DNA $x genetika $7 D018076
650    _2
$a epitopy $x chemie $x metabolismus $7 D000939
650    _2
$a galektin 4 $x genetika $x chemie $7 D037541
650    _2
$a galektiny $x genetika $x chemie $7 D037161
650    _2
$a stanovení celkové genové exprese $7 D020869
650    _2
$a imunohistochemie $7 D007150
650    _2
$a hybridizace in situ $x metody $7 D017403
650    _2
$a myši $7 D051379
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a molekulární sekvence - údaje $7 D008969
650    _2
$a oligosacharidy $x chemie $x metabolismus $7 D009844
650    _2
$a vazba proteinů $7 D011485
650    _2
$a rekombinantní proteiny $x biosyntéza $x chemie $7 D011994
700    1_
$a Smetana, Karel, $d 1958- $7 jn20000710554
700    1_
$a Jeníková, Gabriela $7 xx0126674
700    1_
$a Láchová, Jitka $7 xx0128692
700    1_
$a Krejčiříková, Veronika $7 xx0128639
700    1_
$a Poplštein, Martin. $7 _BN004510
700    1_
$a Fábry, Milan, $d 1947- $7 xx0049924
700    1_
$a Brynda, Jiří $7 xx0100180
700    1_
$a Alvarez, Richard A. $7 gn_A_00005112
700    1_
$a Cummings, Richard D.
700    1_
$a Malý, Petr $7 xx0128744
773    0_
$w MED00173213 $t International journal of molecular medicine $g Roč. 18, č. 1 (2006), s. 65-76 $x 1107-3756
910    __
$a ABA008 $b x $y 9
990    __
$a 20090310084605 $b ABA008
991    __
$a 20121203113752 $b ABA008
999    __
$a ok $b bmc $g 647117 $s 500067
BAS    __
$a 3
BMC    __
$a 2006 $b 18 $c 1 $d 65-76 $m International Journal of Molecular Medicine $x MED00173213
LZP    __
$a 2009-B3/ipme

Najít záznam