-
Je něco špatně v tomto záznamu ?
Fast point-based 3-D alignment of live cells
Matula P, Matula P, Kozubek M, Dvorák V.
Jazyk angličtina Země Spojené státy americké
Typ dokumentu hodnotící studie
- MeSH
- algoritmy MeSH
- artefakty MeSH
- financování organizované MeSH
- fluorescenční mikroskopie metody MeSH
- interpretace obrazu počítačem metody MeSH
- kultivované buňky cytologie MeSH
- lidé MeSH
- pohyb buněk MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- subtrakční technika MeSH
- ukládání a vyhledávání informací metody MeSH
- umělá inteligence MeSH
- videomikroskopie metody MeSH
- vylepšení obrazu metody MeSH
- zobrazování trojrozměrné metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- hodnotící studie MeSH
Typical time intervals between acquisitions of three-dimensional (3-D) images of the same cell in live cell imaging are in the orders of minutes. In the meantime, the live cell can move in a water basin on the stage. This movement can hamper the studies of intranuclear processes. We propose a fast point-based image registration method for the suppression of the movement of a cell as a whole in the image data. First, centroids of certain intracellular objects are computed for each image in a time-lapse series. Then, a matching between the centroids, which have the maximal number of pairs, is sought between consecutive point sets by a 3-D extension of a two-dimensional fast point pattern matching method, which is invariant to rotation, translation, local distortion, and extra/missing points. The proposed 3-D extension assumes rotations only around the z axis to retain the complexity of the original method. The final step involves computing the optimal fully 3-D transformation between images from corresponding points in the least-squares manner. The robustness of the method was evaluated on generated data. The results of the simulations show that the method is very precise and its correctness can be estimated. This article also presents two practical application examples, namely the registration of images of HP1 domains and the registration of images of telomeres. More than 97% of time-consecutive images were successfully registered. The results show that the method is very well suited to live cell imaging.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc07523021
- 003
- CZ-PrNML
- 005
- 20111210134622.0
- 008
- 090512s2006 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Matula, Petr, $d 1975- $7 xx0140973
- 245 10
- $a Fast point-based 3-D alignment of live cells / $c Matula P, Matula P, Kozubek M, Dvorák V.
- 314 __
- $a Faculty of Informatics, Masaryk University, 602 00 Brno, Czech Republic. pem@fi.muni.cz
- 520 9_
- $a Typical time intervals between acquisitions of three-dimensional (3-D) images of the same cell in live cell imaging are in the orders of minutes. In the meantime, the live cell can move in a water basin on the stage. This movement can hamper the studies of intranuclear processes. We propose a fast point-based image registration method for the suppression of the movement of a cell as a whole in the image data. First, centroids of certain intracellular objects are computed for each image in a time-lapse series. Then, a matching between the centroids, which have the maximal number of pairs, is sought between consecutive point sets by a 3-D extension of a two-dimensional fast point pattern matching method, which is invariant to rotation, translation, local distortion, and extra/missing points. The proposed 3-D extension assumes rotations only around the z axis to retain the complexity of the original method. The final step involves computing the optimal fully 3-D transformation between images from corresponding points in the least-squares manner. The robustness of the method was evaluated on generated data. The results of the simulations show that the method is very precise and its correctness can be estimated. This article also presents two practical application examples, namely the registration of images of HP1 domains and the registration of images of telomeres. More than 97% of time-consecutive images were successfully registered. The results show that the method is very well suited to live cell imaging.
- 650 _2
- $a financování organizované $7 D005381
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a artefakty $7 D016477
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a pohyb buněk $7 D002465
- 650 _2
- $a kultivované buňky $x cytologie $7 D002478
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a vylepšení obrazu $x metody $7 D007089
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 _2
- $a ukládání a vyhledávání informací $x metody $7 D016247
- 650 _2
- $a fluorescenční mikroskopie $x metody $7 D008856
- 650 _2
- $a videomikroskopie $x metody $7 D018715
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a subtrakční technika $7 D013382
- 655 _2
- $a hodnotící studie $7 D023362
- 700 1_
- $a Matula, Pavel, $d 1975- $7 xx0140978
- 700 1_
- $a Kozubek, Michal, $d 1974- $7 ola2003204934
- 700 1_
- $a Dvořák, Vladimír, $d 1934-2007 $7 jn20000400593
- 773 0_
- $w MED00002173 $t IEEE transactions on image processing $g Roč. 15, č. 8 (2006), s. 2388-2396 $x 1057-7149
- 910 __
- $a ABA008 $b x $y 9
- 990 __
- $a 20090310084605 $b ABA008
- 991 __
- $a 20111031154054 $b ABA008
- 999 __
- $a ok $b bmc $g 651111 $s 504279
- BAS __
- $a 3
- BMC __
- $a 2006 $b 15 $c 8 $d 2388-2396 $i 1057-7149 $m IEEE transactions on image processing $x MED00002173
- LZP __
- $a 2009-B3/ipme