-
Je něco špatně v tomto záznamu ?
Benchmarking and validating algorithms that estimate pK(a) values of drugs based on their molecular structures
M Meloun, S Bordovska
Jazyk angličtina Země Německo
Typ dokumentu srovnávací studie
NLK
ProQuest Central
od 2001-01-01 do 2010-12-31
Medline Complete (EBSCOhost)
od 2003-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2001-01-01 do 2010-12-31
- MeSH
- algoritmy MeSH
- chemické modely MeSH
- financování organizované MeSH
- kyseliny chemie MeSH
- léčivé přípravky chemie MeSH
- molekulární struktura MeSH
- regresní analýza MeSH
- software MeSH
- statistické modely MeSH
- validace softwaru MeSH
- Publikační typ
- srovnávací studie MeSH
The REGDIA regression diagnostics algorithm in S-Plus is introduced in order to examine the accuracy of pK(a) predictions made with four updated programs: PALLAS, MARVIN, ACD/pKa and SPARC. This report reviews the current status of computational tools for predicting the pK(a) values of organic drug-like compounds. Outlier predicted pK(a) values correspond to molecules that are poorly characterized by the pK(a) prediction program concerned. The statistical detection of outliers can fail because of masking and swamping effects. The Williams graph was selected to give the most reliable detection of outliers. Six statistical characteristics (F(exp), R(2), R(P)(2), MEP, AIC, and s(e) in pK(a) units) of the results obtained when four selected pK(a) prediction algorithms were applied to three datasets were examined. The highest values of F(exp), R(2), R(P)(2), the lowest values of MEP and s(e), and the most negative AIC were found using the ACD/pK (a) algorithm for pK(a) prediction, so this algorithm achieves the best predictive power and the most accurate results. The proposed accuracy test performed by the REGDIA program can also be applied to test the accuracy of other predicted values, such as log P, log D, aqueous solubility or certain physicochemical properties of drug molecules.
Citace poskytuje Crossref.org
- 000
- 02611naa 2200325 a 4500
- 001
- bmc10005873
- 003
- CZ-PrNML
- 005
- 20111210160835.0
- 008
- 100310s2007 gw e eng||
- 009
- AR
- 024 __
- $a 10.1007/s00216-007-1502-x $2 doi
- 035 __
- $a (PubMed)17676314
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Meloun, Milan, $d 1943- $7 nlk19990073554
- 245 10
- $a Benchmarking and validating algorithms that estimate pK(a) values of drugs based on their molecular structures / $c M Meloun, S Bordovska
- 314 __
- $a Department of Analytical Chemistry, Faculty of Chemical Technology, Pardubice University, 532 10, Pardubice, Czech Republic. milan.meloun@upce.cz
- 520 9_
- $a The REGDIA regression diagnostics algorithm in S-Plus is introduced in order to examine the accuracy of pK(a) predictions made with four updated programs: PALLAS, MARVIN, ACD/pKa and SPARC. This report reviews the current status of computational tools for predicting the pK(a) values of organic drug-like compounds. Outlier predicted pK(a) values correspond to molecules that are poorly characterized by the pK(a) prediction program concerned. The statistical detection of outliers can fail because of masking and swamping effects. The Williams graph was selected to give the most reliable detection of outliers. Six statistical characteristics (F(exp), R(2), R(P)(2), MEP, AIC, and s(e) in pK(a) units) of the results obtained when four selected pK(a) prediction algorithms were applied to three datasets were examined. The highest values of F(exp), R(2), R(P)(2), the lowest values of MEP and s(e), and the most negative AIC were found using the ACD/pK (a) algorithm for pK(a) prediction, so this algorithm achieves the best predictive power and the most accurate results. The proposed accuracy test performed by the REGDIA program can also be applied to test the accuracy of other predicted values, such as log P, log D, aqueous solubility or certain physicochemical properties of drug molecules.
- 650 _2
- $a kyseliny $x chemie $7 D000143
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a chemické modely $7 D008956
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a molekulární struktura $7 D015394
- 650 _2
- $a léčivé přípravky $x chemie $7 D004364
- 650 _2
- $a regresní analýza $7 D012044
- 650 _2
- $a software $7 D012984
- 650 _2
- $a validace softwaru $7 D012986
- 650 _2
- $a financování organizované $7 D005381
- 655 _2
- $a srovnávací studie $7 D003160
- 700 1_
- $a Bordovská, Sylva. $7 xx0194290
- 773 0_
- $w MED00006638 $t Analytical and bioanalytical chemistry $g Roč. 389, č. 4 (2007), s. 1267-1281 $x 1618-2642
- 910 __
- $a ABA008 $b x $y 8
- 990 __
- $a 20100518110511 $b ABA008
- 991 __
- $a 20100618143027 $b ABA008
- 999 __
- $a ok $b bmc $g 715281 $s 578257
- BAS __
- $a 3
- BMC __
- $a 2007 $b 389 $c 4 $d 1267-1281 $i 1618-2642 $m Analytical and bioanalytical chemistry $x MED00006638
- LZP __
- $a 2010-B2/dkme