Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Benchmarking and validating algorithms that estimate pK(a) values of drugs based on their molecular structures

M Meloun, S Bordovska

. 2007 ; 389 (4) : 1267-1281.

Jazyk angličtina Země Německo

Typ dokumentu srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc10005873
E-zdroje Online Plný text

NLK ProQuest Central od 2001-01-01 do 2010-12-31
Medline Complete (EBSCOhost) od 2003-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2001-01-01 do 2010-12-31

The REGDIA regression diagnostics algorithm in S-Plus is introduced in order to examine the accuracy of pK(a) predictions made with four updated programs: PALLAS, MARVIN, ACD/pKa and SPARC. This report reviews the current status of computational tools for predicting the pK(a) values of organic drug-like compounds. Outlier predicted pK(a) values correspond to molecules that are poorly characterized by the pK(a) prediction program concerned. The statistical detection of outliers can fail because of masking and swamping effects. The Williams graph was selected to give the most reliable detection of outliers. Six statistical characteristics (F(exp), R(2), R(P)(2), MEP, AIC, and s(e) in pK(a) units) of the results obtained when four selected pK(a) prediction algorithms were applied to three datasets were examined. The highest values of F(exp), R(2), R(P)(2), the lowest values of MEP and s(e), and the most negative AIC were found using the ACD/pK (a) algorithm for pK(a) prediction, so this algorithm achieves the best predictive power and the most accurate results. The proposed accuracy test performed by the REGDIA program can also be applied to test the accuracy of other predicted values, such as log P, log D, aqueous solubility or certain physicochemical properties of drug molecules.

Citace poskytuje Crossref.org

000      
02611naa 2200325 a 4500
001      
bmc10005873
003      
CZ-PrNML
005      
20111210160835.0
008      
100310s2007 gw e eng||
009      
AR
024    __
$a 10.1007/s00216-007-1502-x $2 doi
035    __
$a (PubMed)17676314
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Meloun, Milan, $d 1943- $7 nlk19990073554
245    10
$a Benchmarking and validating algorithms that estimate pK(a) values of drugs based on their molecular structures / $c M Meloun, S Bordovska
314    __
$a Department of Analytical Chemistry, Faculty of Chemical Technology, Pardubice University, 532 10, Pardubice, Czech Republic. milan.meloun@upce.cz
520    9_
$a The REGDIA regression diagnostics algorithm in S-Plus is introduced in order to examine the accuracy of pK(a) predictions made with four updated programs: PALLAS, MARVIN, ACD/pKa and SPARC. This report reviews the current status of computational tools for predicting the pK(a) values of organic drug-like compounds. Outlier predicted pK(a) values correspond to molecules that are poorly characterized by the pK(a) prediction program concerned. The statistical detection of outliers can fail because of masking and swamping effects. The Williams graph was selected to give the most reliable detection of outliers. Six statistical characteristics (F(exp), R(2), R(P)(2), MEP, AIC, and s(e) in pK(a) units) of the results obtained when four selected pK(a) prediction algorithms were applied to three datasets were examined. The highest values of F(exp), R(2), R(P)(2), the lowest values of MEP and s(e), and the most negative AIC were found using the ACD/pK (a) algorithm for pK(a) prediction, so this algorithm achieves the best predictive power and the most accurate results. The proposed accuracy test performed by the REGDIA program can also be applied to test the accuracy of other predicted values, such as log P, log D, aqueous solubility or certain physicochemical properties of drug molecules.
650    _2
$a kyseliny $x chemie $7 D000143
650    _2
$a algoritmy $7 D000465
650    _2
$a chemické modely $7 D008956
650    _2
$a statistické modely $7 D015233
650    _2
$a molekulární struktura $7 D015394
650    _2
$a léčivé přípravky $x chemie $7 D004364
650    _2
$a regresní analýza $7 D012044
650    _2
$a software $7 D012984
650    _2
$a validace softwaru $7 D012986
650    _2
$a financování organizované $7 D005381
655    _2
$a srovnávací studie $7 D003160
700    1_
$a Bordovská, Sylva. $7 xx0194290
773    0_
$w MED00006638 $t Analytical and bioanalytical chemistry $g Roč. 389, č. 4 (2007), s. 1267-1281 $x 1618-2642
910    __
$a ABA008 $b x $y 8
990    __
$a 20100518110511 $b ABA008
991    __
$a 20100618143027 $b ABA008
999    __
$a ok $b bmc $g 715281 $s 578257
BAS    __
$a 3
BMC    __
$a 2007 $b 389 $c 4 $d 1267-1281 $i 1618-2642 $m Analytical and bioanalytical chemistry $x MED00006638
LZP    __
$a 2010-B2/dkme

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...