-
Something wrong with this record ?
Parallel image reconstruction using B-spline approximation (PROBER)
J Petr, J Kybic, M Bock, S Muller, V Hlavac
Language English Country United States
Document type Comparative Study
NLK
Wiley Online Library (archiv)
from 1996-01-01 to 2012-12-31
Wiley Free Content
from 1999 to 5 years ago
- MeSH
- Algorithms MeSH
- Artifacts MeSH
- Time Factors MeSH
- Gadolinium DTPA diagnostic use MeSH
- Adult MeSH
- Phantoms, Imaging MeSH
- Financing, Organized MeSH
- Head anatomy & histology MeSH
- Thorax anatomy & histology MeSH
- Calibration MeSH
- Contrast Media MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Computer Simulation MeSH
- Image Processing, Computer-Assisted methods statistics & numerical data MeSH
- Image Enhancement methods MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Comparative Study MeSH
A new reconstruction method for parallel MRI called PROBER is proposed. The method PROBER works in an image domain similar to methods based on Sensitivity Encoding (SENSE). However, unlike SENSE, which first estimates the spatial sensitivity maps, PROBER approximates the reconstruction coefficients directly by B-splines. Also, B-spline coefficients are estimated at once in order to minimize the reconstruction error instead of estimating the reconstruction in each pixel independently (as in SENSE). This makes the method robust to noise in reference images. No presmoothing of reference images is necessary. The number of estimated parameters is reduced, which speeds up the estimation process. PROBER was tested on simulated, phantom, and in vivo data. The results are compared with commercial implementations of the algorithms SENSE and GRAPPA (Generalized Autocalibrating Partially Parallel Acquisitions) in terms of elapsed time and reconstruction quality. The experiments showed that PROBER is faster than GRAPPA and SENSE for images wider than 150x150 pixels for comparable reconstruction quality. With more basis functions, PROBER outperforms both SENSE and GRAPPA in reconstruction quality at the cost of slightly increased computational time. Copyright (c) 2007 Wiley-Liss, Inc.
- 000
- 03004naa 2200445 a 4500
- 001
- bmc10012821
- 003
- CZ-PrNML
- 005
- 20121113113314.0
- 008
- 100527s2007 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Petr, Jan $7 xx0143826
- 245 10
- $a Parallel image reconstruction using B-spline approximation (PROBER) / $c J Petr, J Kybic, M Bock, S Muller, V Hlavac
- 314 __
- $a Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Center for Machine Perception, Praha, Czech Republic. petrj5@cmp.felk.cvut.cz
- 520 9_
- $a A new reconstruction method for parallel MRI called PROBER is proposed. The method PROBER works in an image domain similar to methods based on Sensitivity Encoding (SENSE). However, unlike SENSE, which first estimates the spatial sensitivity maps, PROBER approximates the reconstruction coefficients directly by B-splines. Also, B-spline coefficients are estimated at once in order to minimize the reconstruction error instead of estimating the reconstruction in each pixel independently (as in SENSE). This makes the method robust to noise in reference images. No presmoothing of reference images is necessary. The number of estimated parameters is reduced, which speeds up the estimation process. PROBER was tested on simulated, phantom, and in vivo data. The results are compared with commercial implementations of the algorithms SENSE and GRAPPA (Generalized Autocalibrating Partially Parallel Acquisitions) in terms of elapsed time and reconstruction quality. The experiments showed that PROBER is faster than GRAPPA and SENSE for images wider than 150x150 pixels for comparable reconstruction quality. With more basis functions, PROBER outperforms both SENSE and GRAPPA in reconstruction quality at the cost of slightly increased computational time. Copyright (c) 2007 Wiley-Liss, Inc.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a artefakty $7 D016477
- 650 _2
- $a kalibrace $7 D002138
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a kontrastní látky $7 D003287
- 650 _2
- $a diethylentriaminpentaacetát gadolinia $x diagnostické užití $7 D019786
- 650 _2
- $a hlava $x anatomie a histologie $7 D006257
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a vylepšení obrazu $x metody $7 D007089
- 650 _2
- $a počítačové zpracování obrazu $x metody $x statistika a číselné údaje $7 D007091
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a fantomy radiodiagnostické $7 D019047
- 650 _2
- $a hrudník $x anatomie a histologie $7 D013909
- 650 _2
- $a časové faktory $7 D013997
- 650 _2
- $a financování organizované $7 D005381
- 655 _2
- $a srovnávací studie $7 D003160
- 700 1_
- $a Kybic, Jan, $d 1974- $7 xx0028484
- 700 1_
- $a Bock, Michael
- 700 1_
- $a Muller, Sven
- 700 1_
- $a Hlaváč, Václav, $d 1956- $7 jn20000602951
- 773 0_
- $t Magnetic Resonance in Medicine $w MED00003172 $g Roč. 58, č. 3 Sep (2007), s. 582-591 $x 0740-3194
- 910 __
- $a ABA008 $b x $y 8
- 990 __
- $a 20100602091641 $b ABA008
- 991 __
- $a 20121113113328 $b ABA008
- 999 __
- $a ok $b bmc $g 726676 $s 589833
- BAS __
- $a 3
- BMC __
- $a 2007 $b 58 $c 3 Sep $d 582-591 $i 0740-3194 $m Magnetic resonance in medicine $n Magn Reson Med $x MED00003172
- LZP __
- $a 2010-B2/vtme