Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Parallel image reconstruction using B-spline approximation (PROBER)

J Petr, J Kybic, M Bock, S Muller, V Hlavac

. 2007 ; 58 (3 Sep) : 582-591.

Language English Country United States

Document type Comparative Study

E-resources Online

NLK Wiley Online Library (archiv) from 1996-01-01 to 2012-12-31
Wiley Free Content from 1999 to 5 years ago

A new reconstruction method for parallel MRI called PROBER is proposed. The method PROBER works in an image domain similar to methods based on Sensitivity Encoding (SENSE). However, unlike SENSE, which first estimates the spatial sensitivity maps, PROBER approximates the reconstruction coefficients directly by B-splines. Also, B-spline coefficients are estimated at once in order to minimize the reconstruction error instead of estimating the reconstruction in each pixel independently (as in SENSE). This makes the method robust to noise in reference images. No presmoothing of reference images is necessary. The number of estimated parameters is reduced, which speeds up the estimation process. PROBER was tested on simulated, phantom, and in vivo data. The results are compared with commercial implementations of the algorithms SENSE and GRAPPA (Generalized Autocalibrating Partially Parallel Acquisitions) in terms of elapsed time and reconstruction quality. The experiments showed that PROBER is faster than GRAPPA and SENSE for images wider than 150x150 pixels for comparable reconstruction quality. With more basis functions, PROBER outperforms both SENSE and GRAPPA in reconstruction quality at the cost of slightly increased computational time. Copyright (c) 2007 Wiley-Liss, Inc.

000      
03004naa 2200445 a 4500
001      
bmc10012821
003      
CZ-PrNML
005      
20121113113314.0
008      
100527s2007 xxu e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Petr, Jan $7 xx0143826
245    10
$a Parallel image reconstruction using B-spline approximation (PROBER) / $c J Petr, J Kybic, M Bock, S Muller, V Hlavac
314    __
$a Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Center for Machine Perception, Praha, Czech Republic. petrj5@cmp.felk.cvut.cz
520    9_
$a A new reconstruction method for parallel MRI called PROBER is proposed. The method PROBER works in an image domain similar to methods based on Sensitivity Encoding (SENSE). However, unlike SENSE, which first estimates the spatial sensitivity maps, PROBER approximates the reconstruction coefficients directly by B-splines. Also, B-spline coefficients are estimated at once in order to minimize the reconstruction error instead of estimating the reconstruction in each pixel independently (as in SENSE). This makes the method robust to noise in reference images. No presmoothing of reference images is necessary. The number of estimated parameters is reduced, which speeds up the estimation process. PROBER was tested on simulated, phantom, and in vivo data. The results are compared with commercial implementations of the algorithms SENSE and GRAPPA (Generalized Autocalibrating Partially Parallel Acquisitions) in terms of elapsed time and reconstruction quality. The experiments showed that PROBER is faster than GRAPPA and SENSE for images wider than 150x150 pixels for comparable reconstruction quality. With more basis functions, PROBER outperforms both SENSE and GRAPPA in reconstruction quality at the cost of slightly increased computational time. Copyright (c) 2007 Wiley-Liss, Inc.
650    _2
$a dospělí $7 D000328
650    _2
$a algoritmy $7 D000465
650    _2
$a artefakty $7 D016477
650    _2
$a kalibrace $7 D002138
650    _2
$a počítačová simulace $7 D003198
650    _2
$a kontrastní látky $7 D003287
650    _2
$a diethylentriaminpentaacetát gadolinia $x diagnostické užití $7 D019786
650    _2
$a hlava $x anatomie a histologie $7 D006257
650    _2
$a lidé $7 D006801
650    _2
$a vylepšení obrazu $x metody $7 D007089
650    _2
$a počítačové zpracování obrazu $x metody $x statistika a číselné údaje $7 D007091
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a fantomy radiodiagnostické $7 D019047
650    _2
$a hrudník $x anatomie a histologie $7 D013909
650    _2
$a časové faktory $7 D013997
650    _2
$a financování organizované $7 D005381
655    _2
$a srovnávací studie $7 D003160
700    1_
$a Kybic, Jan, $d 1974- $7 xx0028484
700    1_
$a Bock, Michael
700    1_
$a Muller, Sven
700    1_
$a Hlaváč, Václav, $d 1956- $7 jn20000602951
773    0_
$t Magnetic Resonance in Medicine $w MED00003172 $g Roč. 58, č. 3 Sep (2007), s. 582-591 $x 0740-3194
910    __
$a ABA008 $b x $y 8
990    __
$a 20100602091641 $b ABA008
991    __
$a 20121113113328 $b ABA008
999    __
$a ok $b bmc $g 726676 $s 589833
BAS    __
$a 3
BMC    __
$a 2007 $b 58 $c 3 Sep $d 582-591 $i 0740-3194 $m Magnetic resonance in medicine $n Magn Reson Med $x MED00003172
LZP    __
$a 2010-B2/vtme

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...