-
Je něco špatně v tomto záznamu ?
Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants
M Kozisek, J Bray, P Rezacova, K Saskova, J Brynda, J Pokorna, F Mammano, L Rulisek, J Konvalinka
Jazyk angličtina Země Velká Británie
Grantová podpora
NR8571
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Zdroj
- MeSH
- aktivace enzymů MeSH
- financování organizované MeSH
- HIV-1 enzymologie genetika MeSH
- HIV-proteasa genetika chemie MeSH
- inhibitory HIV-proteasy chemie MeSH
- kinetika MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- mutace MeSH
- nelfinavir MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- virová léková rezistence MeSH
Human immunodeficiency virus (HIV) encodes an aspartic protease (PR) that cleaves viral polyproteins into mature proteins, thus leading to the formation of infectious particles. Protease inhibitors (PIs) are successful virostatics. However, their efficiency is compromised by antiviral resistance. In the PR sequence of viral variants resistant to the PI nelfinavir, the mutations D30N and L90M appear frequently. However, these two mutations are seldom found together in vivo, suggesting that there are two alternative evolutionary pathways leading to nelfinavir resistance. Here we analyze the proteolytic activities, X-ray structures, and thermodynamics of inhibitor binding to HIV-1 PRs harboring the D30N and L90M mutations alone and in combination with other compensatory mutations. Vitality values obtained for recombinant mutant proteases and selected PR inhibitors confirm the crucial role of mutations in positions 30 and 90 for nelfinavir resistance. The combination of the D30N and L90M mutations significantly increases the enzyme vitality in the presence of nelfinavir, without a dramatic decrease in the catalytic efficiency of the recombinant enzyme. Crystal structures, molecular dynamics simulations, and calorimetric data for four mutants (D30N, D30N/A71V, D30N/N88D, and D30N/L90M) were used to augment our kinetic data. Calorimetric analysis revealed that the entropic contribution to the mutant PR/nelfinavir interaction is less favorable than the entropic contribution to the binding of nelfinavir by wild-type PR. This finding is supported by the structural data and simulations; nelfinavir binds most strongly to the wild-type protease, which has the lowest number of protein-ligand hydrogen bonds and whose structure exhibits the greatest degree of fluctuation upon inhibitor binding.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc10026297
- 003
- CZ-PrNML
- 005
- 20131014125927.0
- 008
- 101018s2007 xxk e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Kožíšek, Milan $7 xx0100179
- 245 10
- $a Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants / $c M Kozisek, J Bray, P Rezacova, K Saskova, J Brynda, J Pokorna, F Mammano, L Rulisek, J Konvalinka
- 314 __
- $a Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Praha 6, Czech Republic.
- 520 9_
- $a Human immunodeficiency virus (HIV) encodes an aspartic protease (PR) that cleaves viral polyproteins into mature proteins, thus leading to the formation of infectious particles. Protease inhibitors (PIs) are successful virostatics. However, their efficiency is compromised by antiviral resistance. In the PR sequence of viral variants resistant to the PI nelfinavir, the mutations D30N and L90M appear frequently. However, these two mutations are seldom found together in vivo, suggesting that there are two alternative evolutionary pathways leading to nelfinavir resistance. Here we analyze the proteolytic activities, X-ray structures, and thermodynamics of inhibitor binding to HIV-1 PRs harboring the D30N and L90M mutations alone and in combination with other compensatory mutations. Vitality values obtained for recombinant mutant proteases and selected PR inhibitors confirm the crucial role of mutations in positions 30 and 90 for nelfinavir resistance. The combination of the D30N and L90M mutations significantly increases the enzyme vitality in the presence of nelfinavir, without a dramatic decrease in the catalytic efficiency of the recombinant enzyme. Crystal structures, molecular dynamics simulations, and calorimetric data for four mutants (D30N, D30N/A71V, D30N/N88D, and D30N/L90M) were used to augment our kinetic data. Calorimetric analysis revealed that the entropic contribution to the mutant PR/nelfinavir interaction is less favorable than the entropic contribution to the binding of nelfinavir by wild-type PR. This finding is supported by the structural data and simulations; nelfinavir binds most strongly to the wild-type protease, which has the lowest number of protein-ligand hydrogen bonds and whose structure exhibits the greatest degree of fluctuation upon inhibitor binding.
- 650 _2
- $a krystalografie rentgenová $7 D018360
- 650 _2
- $a virová léková rezistence $7 D024882
- 650 _2
- $a aktivace enzymů $7 D004789
- 650 _2
- $a HIV-proteasa $x genetika $x chemie $7 D016333
- 650 _2
- $a inhibitory HIV-proteasy $x chemie $7 D017320
- 650 _2
- $a HIV-1 $x enzymologie $x genetika $7 D015497
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a nelfinavir $7 D019888
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a termodynamika $7 D013816
- 650 _2
- $a financování organizované $7 D005381
- 700 1_
- $a Bray, Jenele
- 700 1_
- $a Řezáčová, Pavlína $7 xx0119409
- 700 1_
- $a Grantz Šašková, Klára $7 xx0110542
- 700 1_
- $a Brynda, Jiří $7 xx0100180
- 700 1_
- $a Pokorná, Jana $7 xx0140499
- 700 1_
- $a Mammano, Fabrizio
- 700 1_
- $a Rulíšek, Lubomír, $d 1972- $7 xx0119185
- 700 1_
- $a Konvalinka, Jan, $d 1963- $7 mzk2004208597
- 773 0_
- $w MED00002808 $t Journal of molecular biology $g Roč. 374, č. 4 (2007), s. 1005-1016 $x 0022-2836
- 910 __
- $a ABA008 $b x $y 7 $z 0
- 990 __
- $a 20101116101620 $b ABA008
- 991 __
- $a 20131014130453 $b ABA008
- 999 __
- $a ok $b bmc $g 801402 $s 666148
- BAS __
- $a 3
- BMC __
- $a 2007 $b 374 $c 4 $d 1005-1016 $m Journal of Molecular Biology $n J Mol Biol $x MED00002808
- GRA __
- $a NR8571 $p MZ0
- LZP __
- $a 2010-B/jtme