• Je něco špatně v tomto záznamu ?

Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants

M Kozisek, J Bray, P Rezacova, K Saskova, J Brynda, J Pokorna, F Mammano, L Rulisek, J Konvalinka

. 2007 ; 374 (4) : 1005-1016.

Jazyk angličtina Země Velká Británie

Perzistentní odkaz   https://www.medvik.cz/link/bmc10026297

Grantová podpora
NR8571 MZ0 CEP - Centrální evidence projektů

Human immunodeficiency virus (HIV) encodes an aspartic protease (PR) that cleaves viral polyproteins into mature proteins, thus leading to the formation of infectious particles. Protease inhibitors (PIs) are successful virostatics. However, their efficiency is compromised by antiviral resistance. In the PR sequence of viral variants resistant to the PI nelfinavir, the mutations D30N and L90M appear frequently. However, these two mutations are seldom found together in vivo, suggesting that there are two alternative evolutionary pathways leading to nelfinavir resistance. Here we analyze the proteolytic activities, X-ray structures, and thermodynamics of inhibitor binding to HIV-1 PRs harboring the D30N and L90M mutations alone and in combination with other compensatory mutations. Vitality values obtained for recombinant mutant proteases and selected PR inhibitors confirm the crucial role of mutations in positions 30 and 90 for nelfinavir resistance. The combination of the D30N and L90M mutations significantly increases the enzyme vitality in the presence of nelfinavir, without a dramatic decrease in the catalytic efficiency of the recombinant enzyme. Crystal structures, molecular dynamics simulations, and calorimetric data for four mutants (D30N, D30N/A71V, D30N/N88D, and D30N/L90M) were used to augment our kinetic data. Calorimetric analysis revealed that the entropic contribution to the mutant PR/nelfinavir interaction is less favorable than the entropic contribution to the binding of nelfinavir by wild-type PR. This finding is supported by the structural data and simulations; nelfinavir binds most strongly to the wild-type protease, which has the lowest number of protein-ligand hydrogen bonds and whose structure exhibits the greatest degree of fluctuation upon inhibitor binding.

000      
00000naa 2200000 a 4500
001      
bmc10026297
003      
CZ-PrNML
005      
20131014125927.0
008      
101018s2007 xxk e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Kožíšek, Milan $7 xx0100179
245    10
$a Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants / $c M Kozisek, J Bray, P Rezacova, K Saskova, J Brynda, J Pokorna, F Mammano, L Rulisek, J Konvalinka
314    __
$a Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Praha 6, Czech Republic.
520    9_
$a Human immunodeficiency virus (HIV) encodes an aspartic protease (PR) that cleaves viral polyproteins into mature proteins, thus leading to the formation of infectious particles. Protease inhibitors (PIs) are successful virostatics. However, their efficiency is compromised by antiviral resistance. In the PR sequence of viral variants resistant to the PI nelfinavir, the mutations D30N and L90M appear frequently. However, these two mutations are seldom found together in vivo, suggesting that there are two alternative evolutionary pathways leading to nelfinavir resistance. Here we analyze the proteolytic activities, X-ray structures, and thermodynamics of inhibitor binding to HIV-1 PRs harboring the D30N and L90M mutations alone and in combination with other compensatory mutations. Vitality values obtained for recombinant mutant proteases and selected PR inhibitors confirm the crucial role of mutations in positions 30 and 90 for nelfinavir resistance. The combination of the D30N and L90M mutations significantly increases the enzyme vitality in the presence of nelfinavir, without a dramatic decrease in the catalytic efficiency of the recombinant enzyme. Crystal structures, molecular dynamics simulations, and calorimetric data for four mutants (D30N, D30N/A71V, D30N/N88D, and D30N/L90M) were used to augment our kinetic data. Calorimetric analysis revealed that the entropic contribution to the mutant PR/nelfinavir interaction is less favorable than the entropic contribution to the binding of nelfinavir by wild-type PR. This finding is supported by the structural data and simulations; nelfinavir binds most strongly to the wild-type protease, which has the lowest number of protein-ligand hydrogen bonds and whose structure exhibits the greatest degree of fluctuation upon inhibitor binding.
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a virová léková rezistence $7 D024882
650    _2
$a aktivace enzymů $7 D004789
650    _2
$a HIV-proteasa $x genetika $x chemie $7 D016333
650    _2
$a inhibitory HIV-proteasy $x chemie $7 D017320
650    _2
$a HIV-1 $x enzymologie $x genetika $7 D015497
650    _2
$a kinetika $7 D007700
650    _2
$a molekulární modely $7 D008958
650    _2
$a mutace $7 D009154
650    _2
$a nelfinavir $7 D019888
650    _2
$a vazba proteinů $7 D011485
650    _2
$a konformace proteinů $7 D011487
650    _2
$a termodynamika $7 D013816
650    _2
$a financování organizované $7 D005381
700    1_
$a Bray, Jenele
700    1_
$a Řezáčová, Pavlína $7 xx0119409
700    1_
$a Grantz Šašková, Klára $7 xx0110542
700    1_
$a Brynda, Jiří $7 xx0100180
700    1_
$a Pokorná, Jana $7 xx0140499
700    1_
$a Mammano, Fabrizio
700    1_
$a Rulíšek, Lubomír, $d 1972- $7 xx0119185
700    1_
$a Konvalinka, Jan, $d 1963- $7 mzk2004208597
773    0_
$w MED00002808 $t Journal of molecular biology $g Roč. 374, č. 4 (2007), s. 1005-1016 $x 0022-2836
910    __
$a ABA008 $b x $y 7 $z 0
990    __
$a 20101116101620 $b ABA008
991    __
$a 20131014130453 $b ABA008
999    __
$a ok $b bmc $g 801402 $s 666148
BAS    __
$a 3
BMC    __
$a 2007 $b 374 $c 4 $d 1005-1016 $m Journal of Molecular Biology $n J Mol Biol $x MED00002808
GRA    __
$a NR8571 $p MZ0
LZP    __
$a 2010-B/jtme

Najít záznam