• Je něco špatně v tomto záznamu ?

Effects of spatial smoothing on fMRI group inferences

M Mikl, R Marecek, P Hlustik, M Pavlicova, A Drastich, P Chlebus, M Brazdil, P Krupa

. 2008 ; 26 (4) : 490-503.

Jazyk angličtina Země Spojené státy americké

Perzistentní odkaz   https://www.medvik.cz/link/bmc11003904

The analysis of functional magnetic resonance imaging (fMRI) data involves multiple stages of data pre-processing before the activation can be statistically detected. Spatial smoothing is a very common pre-processing step in the analysis of functional brain imaging data. This study presents a broad perspective on the influence of spatial smoothing on fMRI group activation results. The data obtained from 20 volunteers during a visual oddball task were used for this study. Spatial smoothing using an isotropic gaussian filter kernel with full width at half maximum (FWHM) sizes 2 to 30 mm with a step of 2 mm was applied in two levels - smoothing of fMRI data and/or smoothing of single-subject contrast files prior to general linear model random-effects group analysis generating statistical parametric maps. Five regions of interest were defined, and several parameters (coordinates of nearest local maxima, t value, corrected threshold, effect size, residual values, etc.) were evaluated to examine the effects of spatial smoothing. The optimal filter size for group analysis is discussed according to various criteria. For our experiment, the optimal FWHM is about 8 mm. We can conclude that for robust experiments and an adequate number of subjects in the study, the optimal FWHM for single-subject inference is similar to that for group inference (about 8 mm, according to spatial resolution). For less robust experiments and fewer subjects in the study, a higher FWHM would be optimal for group inference than for single-subject inferences.

Citace poskytuje Crossref.org

000      
03237naa 2200481 a 4500
001      
bmc11003904
003      
CZ-PrNML
005      
20121113113438.0
008      
110302s2008 xxu e eng||
009      
AR
024    __
$a 10.1016/j.mri.2007.08.006 $2 doi
035    __
$a (PubMed)18060720
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mikl, Michal, $d 1978- $7 xx0115854
245    10
$a Effects of spatial smoothing on fMRI group inferences / $c M Mikl, R Marecek, P Hlustik, M Pavlicova, A Drastich, P Chlebus, M Brazdil, P Krupa
314    __
$a Department of Biomedical Engineering, FEEC, Brno University of Technology, Koleni 4, 612 00 Brno, Czech Republic. michal.mikl@fnusa.cz
520    9_
$a The analysis of functional magnetic resonance imaging (fMRI) data involves multiple stages of data pre-processing before the activation can be statistically detected. Spatial smoothing is a very common pre-processing step in the analysis of functional brain imaging data. This study presents a broad perspective on the influence of spatial smoothing on fMRI group activation results. The data obtained from 20 volunteers during a visual oddball task were used for this study. Spatial smoothing using an isotropic gaussian filter kernel with full width at half maximum (FWHM) sizes 2 to 30 mm with a step of 2 mm was applied in two levels - smoothing of fMRI data and/or smoothing of single-subject contrast files prior to general linear model random-effects group analysis generating statistical parametric maps. Five regions of interest were defined, and several parameters (coordinates of nearest local maxima, t value, corrected threshold, effect size, residual values, etc.) were evaluated to examine the effects of spatial smoothing. The optimal filter size for group analysis is discussed according to various criteria. For our experiment, the optimal FWHM is about 8 mm. We can conclude that for robust experiments and an adequate number of subjects in the study, the optimal FWHM for single-subject inference is similar to that for group inference (about 8 mm, according to spatial resolution). For less robust experiments and fewer subjects in the study, a higher FWHM would be optimal for group inference than for single-subject inferences.
650    _2
$a dospělí $7 D000328
650    _2
$a algoritmy $7 D000465
650    _2
$a artefakty $7 D016477
650    _2
$a mozek $x patologie $7 D001921
650    _2
$a mapování mozku $x metody $x přístrojové vybavení $7 D001931
650    _2
$a kontrastní látky $7 D003287
650    _2
$a design vybavení $7 D004867
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $7 D007091
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a statistické modely $7 D015233
650    _2
$a normální rozdělení $7 D016011
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a financování organizované $7 D005381
700    1_
$a Mareček, Radek $7 xx0160209
700    1_
$a Hluštík, Petr, $d 1964- $7 xx0074066
700    1_
$a Pavlicová, Martina $7 xx0140748
700    1_
$a Drastich, Aleš, $d 1943-2018 $7 mzk2005271785
700    1_
$a Chlebus, Pavel $7 stk2008428787
700    1_
$a Brázdil, Milan, $d 1965- $7 mzk2004258674
700    1_
$a Krupa, Petr, $d 1954- $7 xx0081878
773    0_
$t Magnetic Resonance Imaging $w MED00003171 $g Roč. 26, č. 4 (2008), s. 490-503 $x 0730-725X
910    __
$a ABA008 $b x $y 6
990    __
$a 20110412115303 $b ABA008
991    __
$a 20121113113453 $b ABA008
999    __
$a ok $b bmc $g 831245 $s 695928
BAS    __
$a 3
BMC    __
$a 2008 $b 26 $c 4 $d 490-503 $i 0730-725X $m Magnetic resonance imaging $n Magn Reson Imaging $x MED00003171
LZP    __
$a 2011-3B/irme

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...