-
Je něco špatně v tomto záznamu ?
Effects of spatial smoothing on fMRI group inferences
M Mikl, R Marecek, P Hlustik, M Pavlicova, A Drastich, P Chlebus, M Brazdil, P Krupa
Jazyk angličtina Země Spojené státy americké
- MeSH
- algoritmy MeSH
- artefakty MeSH
- design vybavení MeSH
- dospělí MeSH
- financování organizované MeSH
- kontrastní látky MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mapování mozku metody přístrojové vybavení MeSH
- mozek patologie MeSH
- normální rozdělení MeSH
- počítačové zpracování obrazu MeSH
- reprodukovatelnost výsledků MeSH
- statistické modely MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
The analysis of functional magnetic resonance imaging (fMRI) data involves multiple stages of data pre-processing before the activation can be statistically detected. Spatial smoothing is a very common pre-processing step in the analysis of functional brain imaging data. This study presents a broad perspective on the influence of spatial smoothing on fMRI group activation results. The data obtained from 20 volunteers during a visual oddball task were used for this study. Spatial smoothing using an isotropic gaussian filter kernel with full width at half maximum (FWHM) sizes 2 to 30 mm with a step of 2 mm was applied in two levels - smoothing of fMRI data and/or smoothing of single-subject contrast files prior to general linear model random-effects group analysis generating statistical parametric maps. Five regions of interest were defined, and several parameters (coordinates of nearest local maxima, t value, corrected threshold, effect size, residual values, etc.) were evaluated to examine the effects of spatial smoothing. The optimal filter size for group analysis is discussed according to various criteria. For our experiment, the optimal FWHM is about 8 mm. We can conclude that for robust experiments and an adequate number of subjects in the study, the optimal FWHM for single-subject inference is similar to that for group inference (about 8 mm, according to spatial resolution). For less robust experiments and fewer subjects in the study, a higher FWHM would be optimal for group inference than for single-subject inferences.
Citace poskytuje Crossref.org
- 000
- 03237naa 2200481 a 4500
- 001
- bmc11003904
- 003
- CZ-PrNML
- 005
- 20121113113438.0
- 008
- 110302s2008 xxu e eng||
- 009
- AR
- 024 __
- $a 10.1016/j.mri.2007.08.006 $2 doi
- 035 __
- $a (PubMed)18060720
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Mikl, Michal, $d 1978- $7 xx0115854
- 245 10
- $a Effects of spatial smoothing on fMRI group inferences / $c M Mikl, R Marecek, P Hlustik, M Pavlicova, A Drastich, P Chlebus, M Brazdil, P Krupa
- 314 __
- $a Department of Biomedical Engineering, FEEC, Brno University of Technology, Koleni 4, 612 00 Brno, Czech Republic. michal.mikl@fnusa.cz
- 520 9_
- $a The analysis of functional magnetic resonance imaging (fMRI) data involves multiple stages of data pre-processing before the activation can be statistically detected. Spatial smoothing is a very common pre-processing step in the analysis of functional brain imaging data. This study presents a broad perspective on the influence of spatial smoothing on fMRI group activation results. The data obtained from 20 volunteers during a visual oddball task were used for this study. Spatial smoothing using an isotropic gaussian filter kernel with full width at half maximum (FWHM) sizes 2 to 30 mm with a step of 2 mm was applied in two levels - smoothing of fMRI data and/or smoothing of single-subject contrast files prior to general linear model random-effects group analysis generating statistical parametric maps. Five regions of interest were defined, and several parameters (coordinates of nearest local maxima, t value, corrected threshold, effect size, residual values, etc.) were evaluated to examine the effects of spatial smoothing. The optimal filter size for group analysis is discussed according to various criteria. For our experiment, the optimal FWHM is about 8 mm. We can conclude that for robust experiments and an adequate number of subjects in the study, the optimal FWHM for single-subject inference is similar to that for group inference (about 8 mm, according to spatial resolution). For less robust experiments and fewer subjects in the study, a higher FWHM would be optimal for group inference than for single-subject inferences.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a artefakty $7 D016477
- 650 _2
- $a mozek $x patologie $7 D001921
- 650 _2
- $a mapování mozku $x metody $x přístrojové vybavení $7 D001931
- 650 _2
- $a kontrastní látky $7 D003287
- 650 _2
- $a design vybavení $7 D004867
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a normální rozdělení $7 D016011
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a financování organizované $7 D005381
- 700 1_
- $a Mareček, Radek $7 xx0160209
- 700 1_
- $a Hluštík, Petr, $d 1964- $7 xx0074066
- 700 1_
- $a Pavlicová, Martina $7 xx0140748
- 700 1_
- $a Drastich, Aleš, $d 1943-2018 $7 mzk2005271785
- 700 1_
- $a Chlebus, Pavel $7 stk2008428787
- 700 1_
- $a Brázdil, Milan, $d 1965- $7 mzk2004258674
- 700 1_
- $a Krupa, Petr, $d 1954- $7 xx0081878
- 773 0_
- $t Magnetic Resonance Imaging $w MED00003171 $g Roč. 26, č. 4 (2008), s. 490-503 $x 0730-725X
- 910 __
- $a ABA008 $b x $y 6
- 990 __
- $a 20110412115303 $b ABA008
- 991 __
- $a 20121113113453 $b ABA008
- 999 __
- $a ok $b bmc $g 831245 $s 695928
- BAS __
- $a 3
- BMC __
- $a 2008 $b 26 $c 4 $d 490-503 $i 0730-725X $m Magnetic resonance imaging $n Magn Reson Imaging $x MED00003171
- LZP __
- $a 2011-3B/irme