-
Je něco špatně v tomto záznamu ?
Computer-aided evaluation of screening mammograms based on local texture models
J Grim, P Somol, M Haindl, J Danes
Jazyk angličtina Země Spojené státy americké
PubMed
19228558
DOI
10.1109/tip.2008.2011168
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- diagnóza počítačová metody MeSH
- financování organizované MeSH
- lidé MeSH
- mamografie MeSH
- multivariační analýza MeSH
- nádory prsu diagnóza prevence a kontrola MeSH
- normální rozdělení MeSH
- počítačové zpracování obrazu metody MeSH
- statistické modely MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
We propose a new approach to diagnostic evaluation of screening mammograms based on local statistical texture models. The local evaluation tool has the form of a multivariate probability density of gray levels in a suitably chosen search window. First, the density function in the form of Gaussian mixture is estimated from data obtained by scanning of the mammogram with the search window. Then we evaluate the estimated mixture at each position and display the corresponding log-likelihood value as a gray level at the window center. The resulting log-likelihood image closely correlates with the structural details of the original mammogram and emphasizes unusual places. We assume that, in parallel use, the log-likelihood image may provide additional information to facilitate the identification of malignant lesions as atypical locations of high novelty.
Citace poskytuje Crossref.org
- 000
- 02298naa 2200373 a 4500
- 001
- bmc11009545
- 003
- CZ-PrNML
- 005
- 20221005125706.0
- 008
- 110510s2009 xxu e eng||
- 009
- AR
- 024 7_
- $a 10.1109/TIP.2008.2011168 $2 doi
- 035 __
- $a (PubMed)19228558
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Grim, Jiří. $7 _AN062545
- 245 10
- $a Computer-aided evaluation of screening mammograms based on local texture models / $c J Grim, P Somol, M Haindl, J Danes
- 314 __
- $a Institute of Information Theory and Automation, Czech Academy of Sciences, Prague 8, Czech Republic. grim@utia.cas.cz
- 520 9_
- $a We propose a new approach to diagnostic evaluation of screening mammograms based on local statistical texture models. The local evaluation tool has the form of a multivariate probability density of gray levels in a suitably chosen search window. First, the density function in the form of Gaussian mixture is estimated from data obtained by scanning of the mammogram with the search window. Then we evaluate the estimated mixture at each position and display the corresponding log-likelihood value as a gray level at the window center. The resulting log-likelihood image closely correlates with the structural details of the original mammogram and emphasizes unusual places. We assume that, in parallel use, the log-likelihood image may provide additional information to facilitate the identification of malignant lesions as atypical locations of high novelty.
- 590 __
- $a bohemika - dle Pubmed
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a nádory prsu $x diagnóza $x prevence a kontrola $7 D001943
- 650 _2
- $a diagnóza počítačová $x metody $7 D003936
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a mamografie $7 D008327
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a multivariační analýza $7 D015999
- 650 _2
- $a normální rozdělení $7 D016011
- 650 _2
- $a financování organizované $7 D005381
- 700 1_
- $a Somol, Petr $7 xx0086118
- 700 1_
- $a Haindl, Michal, $d 1955- $7 xx0050053
- 700 1_
- $a Daneš, Jan, $d 1955- $7 jn20000400440
- 773 0_
- $t IEEE Transactions on Image Processing $w MED00002173 $g Roč. 18, č. 4 (2009), s. 765-773 $x 1057-7149
- 910 __
- $a ABA008 $b x $y 2 $z 0
- 990 __
- $a 20110513110020 $b ABA008
- 991 __
- $a 20221005125701 $b ABA008
- 999 __
- $a ok $b bmc $g 839078 $s 702933
- BAS __
- $a 3
- BMC __
- $a 2009 $b 18 $c 4 $d 765-773 $i 1057-7149 $m IEEE transactions on image processing $n IEEE trans. image process $x MED00002173
- LZP __
- $a 2011-2B09/jvme