-
Something wrong with this record ?
Long short-term memory for apnea detection based on Heart Rate Variability
D. Novák, K. Mucha, T. Al-Ani
Language English Country United States
- MeSH
- Algorithms MeSH
- Diagnosis, Computer-Assisted methods MeSH
- Financing, Organized MeSH
- Humans MeSH
- Neural Networks, Computer MeSH
- Memory MeSH
- Signal Processing, Computer-Assisted MeSH
- Polysomnography methods MeSH
- Reproducibility of Results MeSH
- Pattern Recognition, Automated MeSH
- Sensitivity and Specificity MeSH
- Heart Rate MeSH
- Sleep Apnea Syndromes diagnosis physiopathology MeSH
- Check Tag
- Humans MeSH
The main drive force in apnea current diagnostic is to reduce overwhelming number of sleep disorders candidates by means of very simple-to-use, comfortable and cheap methodology. The proposed framework is based only on automatic analysis of electrocardiogram signal. The feature extraction stage was performed using methods of Heart Rate Variability and Detrended Fluctuation analysis. Feature-spaces formed using these two methods were used as input to a Long Short-Term Memory Artificial Neural Network chosen for its capability to find temporally dependencies in the data. The framework was evaluated on Challenge 2000 Physionet database yielding successful rate 82.1%, sensitivity 85.5% and specificity 80.1%.
References provided by Crossref.org
- 000
- 02352naa 2200385 a 4500
- 001
- bmc11009939
- 003
- CZ-PrNML
- 005
- 20221005131451.0
- 008
- 110511s2008 xxu e eng||
- 009
- AR
- 024 7_
- $a 10.1109/IEMBS.2008.4650394 $2 doi
- 035 __
- $a (PubMed)19163897
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Novák, Daniel, $d 1976- $7 ntka173552
- 245 10
- $a Long short-term memory for apnea detection based on Heart Rate Variability / $c D. Novák, K. Mucha, T. Al-Ani
- 314 __
- $a Department of Cybernetics, Czech Technical University in Prague, Czech Republic. xnovakd1@labe.felk.cvut.cz
- 520 9_
- $a The main drive force in apnea current diagnostic is to reduce overwhelming number of sleep disorders candidates by means of very simple-to-use, comfortable and cheap methodology. The proposed framework is based only on automatic analysis of electrocardiogram signal. The feature extraction stage was performed using methods of Heart Rate Variability and Detrended Fluctuation analysis. Feature-spaces formed using these two methods were used as input to a Long Short-Term Memory Artificial Neural Network chosen for its capability to find temporally dependencies in the data. The framework was evaluated on Challenge 2000 Physionet database yielding successful rate 82.1%, sensitivity 85.5% and specificity 80.1%.
- 590 __
- $a bohemika - dle Pubmed
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a diagnóza počítačová $x metody $7 D003936
- 650 _2
- $a srdeční frekvence $7 D006339
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a paměť $7 D008568
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a rozpoznávání automatizované $7 D010363
- 650 _2
- $a polysomnografie $x metody $7 D017286
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a syndromy spánkové apnoe $x diagnóza $x patofyziologie $7 D012891
- 650 _2
- $a financování organizované $7 D005381
- 700 1_
- $a Mucha, Karel. $7 _AN064315
- 700 1_
- $a Al-Ani, Tarik $7 gn_A_00003289
- 773 0_
- $t Conference proceedings ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society $w MED00180111 $g (2008), s. 5234-5237 $x 1557-170X
- 910 __
- $a ABA008 $b x $y 2 $z 0
- 990 __
- $a 20110513111654 $b ABA008
- 991 __
- $a 20221005131446 $b ABA008
- 999 __
- $a ok $b bmc $g 839213 $s 703346
- BAS __
- $a 3
- BMC __
- $a 2008 $d 5234-5237 $i 1557-170X $m Conference proceedings ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society $n Conf Proc IEEE Eng Med Biol Soc $x MED00180111
- LZP __
- $a 2011-2B09/jvme