• Something wrong with this record ?

Long short-term memory for apnea detection based on Heart Rate Variability

D. Novák, K. Mucha, T. Al-Ani

Language English Country United States

The main drive force in apnea current diagnostic is to reduce overwhelming number of sleep disorders candidates by means of very simple-to-use, comfortable and cheap methodology. The proposed framework is based only on automatic analysis of electrocardiogram signal. The feature extraction stage was performed using methods of Heart Rate Variability and Detrended Fluctuation analysis. Feature-spaces formed using these two methods were used as input to a Long Short-Term Memory Artificial Neural Network chosen for its capability to find temporally dependencies in the data. The framework was evaluated on Challenge 2000 Physionet database yielding successful rate 82.1%, sensitivity 85.5% and specificity 80.1%.

References provided by Crossref.org

000      
02352naa 2200385 a 4500
001      
bmc11009939
003      
CZ-PrNML
005      
20221005131451.0
008      
110511s2008 xxu e eng||
009      
AR
024    7_
$a 10.1109/IEMBS.2008.4650394 $2 doi
035    __
$a (PubMed)19163897
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Novák, Daniel, $d 1976- $7 ntka173552
245    10
$a Long short-term memory for apnea detection based on Heart Rate Variability / $c D. Novák, K. Mucha, T. Al-Ani
314    __
$a Department of Cybernetics, Czech Technical University in Prague, Czech Republic. xnovakd1@labe.felk.cvut.cz
520    9_
$a The main drive force in apnea current diagnostic is to reduce overwhelming number of sleep disorders candidates by means of very simple-to-use, comfortable and cheap methodology. The proposed framework is based only on automatic analysis of electrocardiogram signal. The feature extraction stage was performed using methods of Heart Rate Variability and Detrended Fluctuation analysis. Feature-spaces formed using these two methods were used as input to a Long Short-Term Memory Artificial Neural Network chosen for its capability to find temporally dependencies in the data. The framework was evaluated on Challenge 2000 Physionet database yielding successful rate 82.1%, sensitivity 85.5% and specificity 80.1%.
590    __
$a bohemika - dle Pubmed
650    _2
$a algoritmy $7 D000465
650    _2
$a diagnóza počítačová $x metody $7 D003936
650    _2
$a srdeční frekvence $7 D006339
650    _2
$a lidé $7 D006801
650    _2
$a paměť $7 D008568
650    _2
$a neuronové sítě $7 D016571
650    _2
$a rozpoznávání automatizované $7 D010363
650    _2
$a polysomnografie $x metody $7 D017286
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a počítačové zpracování signálu $7 D012815
650    _2
$a syndromy spánkové apnoe $x diagnóza $x patofyziologie $7 D012891
650    _2
$a financování organizované $7 D005381
700    1_
$a Mucha, Karel. $7 _AN064315
700    1_
$a Al-Ani, Tarik $7 gn_A_00003289
773    0_
$t Conference proceedings ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society $w MED00180111 $g (2008), s. 5234-5237 $x 1557-170X
910    __
$a ABA008 $b x $y 2 $z 0
990    __
$a 20110513111654 $b ABA008
991    __
$a 20221005131446 $b ABA008
999    __
$a ok $b bmc $g 839213 $s 703346
BAS    __
$a 3
BMC    __
$a 2008 $d 5234-5237 $i 1557-170X $m Conference proceedings ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society $n Conf Proc IEEE Eng Med Biol Soc $x MED00180111
LZP    __
$a 2011-2B09/jvme

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...