-
Something wrong with this record ?
Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin
I. Kubíková, H. Konečná, O. Šedo, Z. Zdráhal, P. Řehulka, H. Hříbková, H. Řehulková, A. Hampl, J. Chmelík, P. Dvořák
Language English Country Great Britain
Document type Research Support, Non-U.S. Gov't
NLK
Medline Complete (EBSCOhost)
from 2000-01-01 to 2012-11-30
ROAD: Directory of Open Access Scholarly Resources
from 1999
- MeSH
- Antigens, Heterophile immunology MeSH
- Antigens, Neoplasm immunology metabolism MeSH
- Apolipoproteins immunology metabolism MeSH
- Cell Line MeSH
- Microscopy, Electron MeSH
- Embryonic Stem Cells cytology immunology metabolism MeSH
- Fibroblasts cytology immunology metabolism MeSH
- Gene Products, gag immunology metabolism MeSH
- Coculture Techniques MeSH
- Humans MeSH
- Cell-Derived Microparticles immunology metabolism MeSH
- Mice MeSH
- Apoptosis Regulatory Proteins immunology metabolism MeSH
- Proteomics MeSH
- Risk-Taking MeSH
- Cattle MeSH
- Tandem Mass Spectrometry MeSH
- Tissue Therapy, Historical adverse effects MeSH
- Transferrin immunology metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Cattle MeSH
- Animals MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND AIMS: Microvesicles (MV) shed from the plasma membrane of eukaryotic cells, including human embryonic stem cells (hESC), contain proteins, lipids and RNA and serve as mediators of cell-to-cell communication. However, they may also contain immunogenic membrane domains and infectious particles acquired from xenogenic components of the culture milieu. Therefore, MV represent a potential risk for clinical application of cell therapy. METHODS: We tested the ability of hESC and their most commonly used feeder cells, mouse embryonic fibroblasts (MEF), to produce MV. We found that hESC are potent producers of MV, whereas mitotically inactivated MEF do not produce any detectable MV. We therefore employed a combined proteomic approach to identify the molecules that constitute the major components of MV from hESC maintained in a standard culture setting with xenogenic feeder cells. RESULTS: In purified MV fractions, we identified a total of 22 proteins, including five unique protein species that are known to be highly expressed in invasive cancers and participate in cellular activation, metastasis and inhibition of apoptosis. Moreover, we found that hESC-derived MV contained the immunogenic agents apolipoprotein and transferrin, a source of Neu5Gc, as well as mouse retroviral Gag protein. CONCLUSIONS: These findings indicate that MV represent a mechanism by which hESC communicate; however, they also serve as potential carriers of immunogenic and pathogenic compounds acquired from environment. Our results highlight a potential danger regarding the use of hESC that have previously been exposed to animal proteins and cells.
- 000
- 04187naa 2200673 a 4500
- 001
- bmc11023064
- 003
- CZ-PrNML
- 005
- 20121122112457.0
- 008
- 110801s2009 xxk e Eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Kubíková, Iva. $7 _AN067869
- 245 10
- $a Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin / $c I. Kubíková, H. Konečná, O. Šedo, Z. Zdráhal, P. Řehulka, H. Hříbková, H. Řehulková, A. Hampl, J. Chmelík, P. Dvořák
- 314 __
- $a Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- 520 9_
- $a BACKGROUND AIMS: Microvesicles (MV) shed from the plasma membrane of eukaryotic cells, including human embryonic stem cells (hESC), contain proteins, lipids and RNA and serve as mediators of cell-to-cell communication. However, they may also contain immunogenic membrane domains and infectious particles acquired from xenogenic components of the culture milieu. Therefore, MV represent a potential risk for clinical application of cell therapy. METHODS: We tested the ability of hESC and their most commonly used feeder cells, mouse embryonic fibroblasts (MEF), to produce MV. We found that hESC are potent producers of MV, whereas mitotically inactivated MEF do not produce any detectable MV. We therefore employed a combined proteomic approach to identify the molecules that constitute the major components of MV from hESC maintained in a standard culture setting with xenogenic feeder cells. RESULTS: In purified MV fractions, we identified a total of 22 proteins, including five unique protein species that are known to be highly expressed in invasive cancers and participate in cellular activation, metastasis and inhibition of apoptosis. Moreover, we found that hESC-derived MV contained the immunogenic agents apolipoprotein and transferrin, a source of Neu5Gc, as well as mouse retroviral Gag protein. CONCLUSIONS: These findings indicate that MV represent a mechanism by which hESC communicate; however, they also serve as potential carriers of immunogenic and pathogenic compounds acquired from environment. Our results highlight a potential danger regarding the use of hESC that have previously been exposed to animal proteins and cells.
- 590 __
- $a bohemika - dle Pubmed
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a antigeny heterofilní $x imunologie $7 D015478
- 650 _2
- $a antigeny nádorové $x imunologie $x metabolismus $7 D000951
- 650 _2
- $a apolipoproteiny $x imunologie $x metabolismus $7 D001053
- 650 _2
- $a proteiny regulující apoptózu $x imunologie $x metabolismus $7 D051017
- 650 _2
- $a skot $7 D002417
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a mikropartikule $x imunologie $x metabolismus $7 D055252
- 650 _2
- $a kokultivační techniky $7 D018920
- 650 _2
- $a embryonální kmenové buňky $x cytologie $x imunologie $x metabolismus $7 D053595
- 650 _2
- $a fibroblasty $x cytologie $x imunologie $x metabolismus $7 D005347
- 650 _2
- $a genové produkty gag $x imunologie $x metabolismus $7 D015683
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a elektronová mikroskopie $7 D008854
- 650 _2
- $a proteomika $7 D040901
- 650 _2
- $a riskování $7 D012309
- 650 _2
- $a tandemová hmotnostní spektrometrie $7 D053719
- 650 _2
- $a tkáňová terapie - dějiny $x škodlivé účinky $7 D014023
- 650 _2
- $a transferin $x imunologie $x metabolismus $7 D014168
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Konečná, Hana, $d 1957- $7 xx0127943
- 700 1_
- $a Šedo, Ondrej, $d 1979- $7 xx0122934
- 700 1_
- $a Zdráhal, Zbyněk $7 xx0074482
- 700 1_
- $a Řehulka, Pavel, $d 1975- $7 xx0034914
- 700 1#
- $a Hříbková, Hana. $7 mzk2006356131
- 700 1#
- $a Řehulková, Helena. $7 xx0204964
- 700 1_
- $a Hampl, Aleš, $d 1962- $7 ola2002153626
- 700 1#
- $a Chmelík, Josef. $7 _BN001654
- 700 1_
- $a Dvořák, Petr, $d 1956- $7 ola2002153627
- 773 0_
- $t Cytotherapy $w MED00010464 $g Roč. 11, č. 3 (2009), s. 330-340 $x 1465-3249
- 910 __
- $a ABA008 $b x $y 2
- 990 __
- $a 20110802111516 $b ABA008
- 991 __
- $a 20121122112519 $b ABA008
- 999 __
- $a ok $b bmc $g 881905 $s 732994
- BAS __
- $a 3
- BMC __
- $a 2009 $b 11 $c 3 $d 330-340 $m Cytotherapy $n Cytotherapy $i 1465-3249 $x MED00010464
- LZP __
- $a 2011-4B09/jvme