-
Something wrong with this record ?
Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair
S. Kubinová, D. Horák, A. Hejčl, Z. Plichta, J. Kotek, E. Syková
Language English Country United States
Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
PubMed
21953978
DOI
10.1002/jbm.a.33221
Knihovny.cz E-resources
- MeSH
- Biocompatible Materials chemistry MeSH
- Cell Adhesion MeSH
- Cholesterol chemistry MeSH
- Implants, Experimental MeSH
- Hydrogels chemistry MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Stress, Mechanical MeSH
- Methacrylates chemistry MeSH
- Mesenchymal Stem Cells cytology physiology MeSH
- Molecular Structure MeSH
- Polyhydroxyethyl Methacrylate chemistry MeSH
- Spinal Cord Injuries pathology MeSH
- Porosity MeSH
- Rats, Wistar MeSH
- Cell Proliferation MeSH
- Spinal Cord Regeneration MeSH
- Nerve Regeneration MeSH
- Materials Testing MeSH
- Tissue Scaffolds chemistry MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with cholesterol and the introduction of large pores have been developed to create highly superporous hydrogels that promote cell-surface interactions and that can serve as a permissive scaffold for spinal cord injury (SCI) treatment. Highly superporous cholesterol-modified PHEMA scaffolds have been prepared by the bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), cholesterol methacrylate (CHLMA), and ethylene dimethacrylate (EDMA) cross-linking agent in the presence of ammonium oxalate crystals to establish interconnected pores in the scaffold. Moreover, 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) was incorporated in the polymerization recipe and hydrolyzed, thus introducing carboxyl groups in the hydrogel to control its swelling and softness. The hydrogels supported the in vitro adhesion and proliferation of rat mesenchymal stem cells. In an in vivo study of acute rat SCI, hydrogels were implanted to bridge a hemisection cavity. Histological evaluation was done 4 weeks after implantation and revealed the good incorporation of the implanted hydrogels into the surrounding tissue, the progressive infiltration of connective tissue and the ingrowth of neurofilaments, Schwann cells, and blood vessels into the hydrogel pores. The results show that highly superporous cholesterol-modified PHEMA hydrogels have bioadhesive properties and are able to bridge a spinal cord lesion.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12022343
- 003
- CZ-PrNML
- 005
- 20160502143054.0
- 007
- ta
- 008
- 120806s2011 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1002/jbm.a.33221 $2 doi
- 035 __
- $a (PubMed)21953978
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kubinová, Šárka $7 xx0128662 $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4, Czech Republic. sarka.k@biomed.cas.cz
- 245 10
- $a Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair / $c S. Kubinová, D. Horák, A. Hejčl, Z. Plichta, J. Kotek, E. Syková
- 520 9_
- $a Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with cholesterol and the introduction of large pores have been developed to create highly superporous hydrogels that promote cell-surface interactions and that can serve as a permissive scaffold for spinal cord injury (SCI) treatment. Highly superporous cholesterol-modified PHEMA scaffolds have been prepared by the bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), cholesterol methacrylate (CHLMA), and ethylene dimethacrylate (EDMA) cross-linking agent in the presence of ammonium oxalate crystals to establish interconnected pores in the scaffold. Moreover, 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) was incorporated in the polymerization recipe and hydrolyzed, thus introducing carboxyl groups in the hydrogel to control its swelling and softness. The hydrogels supported the in vitro adhesion and proliferation of rat mesenchymal stem cells. In an in vivo study of acute rat SCI, hydrogels were implanted to bridge a hemisection cavity. Histological evaluation was done 4 weeks after implantation and revealed the good incorporation of the implanted hydrogels into the surrounding tissue, the progressive infiltration of connective tissue and the ingrowth of neurofilaments, Schwann cells, and blood vessels into the hydrogel pores. The results show that highly superporous cholesterol-modified PHEMA hydrogels have bioadhesive properties and are able to bridge a spinal cord lesion.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a biokompatibilní materiály $x chemie $7 D001672
- 650 _2
- $a buněčná adheze $7 D002448
- 650 _2
- $a proliferace buněk $7 D049109
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a cholesterol $x chemie $7 D002784
- 650 _2
- $a hydrogely $x chemie $7 D020100
- 650 _2
- $a experimentální implantáty $7 D020007
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a testování materiálů $7 D008422
- 650 _2
- $a mezenchymální kmenové buňky $x cytologie $x fyziologie $7 D059630
- 650 _2
- $a methakryláty $x chemie $7 D008689
- 650 _2
- $a molekulární struktura $7 D015394
- 650 _2
- $a regenerace nervu $7 D009416
- 650 _2
- $a polyhydroxyethylmethakrylát $x chemie $7 D011102
- 650 _2
- $a poréznost $7 D016062
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a potkani Wistar $7 D017208
- 650 _2
- $a poranění míchy $x patologie $7 D013119
- 650 _2
- $a regenerace míchy $7 D058630
- 650 _2
- $a mechanický stres $7 D013314
- 650 _2
- $a tkáňové podpůrné struktury $x chemie $7 D054457
- 655 _2
- $a hodnotící studie $7 D023362
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Horák, Daniel $7 xx0076519 $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czech Republic; Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czech Republic
- 700 1_
- $a Hejčl, Aleš, $d 1978- $7 xx0077402 $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Víden̆ská 1083, 14220 Prague 4, Czech Republic; Department of Neurosurgery, Masaryk Hospital, Sociální péče 3316/12a, 40011 Ústí nad Labem, Czech Republic
- 700 1_
- $a Plichta, Zdeněk $7 xx0171565 $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czech Republic
- 700 1_
- $a Kotek, Jiří $7 ntka173005 $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czech Republic
- 700 1_
- $a Syková, Eva, $d 1944- $7 jn20000710633 $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Víden̆ská 1083, 14220 Prague 4, Czech Republic; Center for Cell Therapy and Tissue Repair, Charles University, V Úvalu 84, 15006 Prague 5, Czech Republic; Department of Neuroscience, 2nd Medical Faculty, Charles University, V Úvalu 84, 15006 Prague 5, Czech Republic
- 773 0_
- $w MED00007498 $t Journal of biomedical materials research. Part A $x 1552-4965 $g Roč. 99, č. 4 (2011), s. 618-629
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21953978 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120806 $b ABA008
- 991 __
- $a 20160502143151 $b ABA008
- 999 __
- $a ok $b bmc $g 944256 $s 779640
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 99 $c 4 $d 618-629 $e 20110927 $i 1552-4965 $m Journal of biomedical materials research. Part A $n J Biomed Mater Res $x MED00007498
- LZP __
- $b NLK111 $a Pubmed-20120806/12/01