-
Je něco špatně v tomto záznamu ?
Affinity capillary electrophoresis and quantum mechanical calculations applied to the investigation of hexaarylbenzene-based receptor binding with lithium ion
S. Ehala, P. Toman, R. Rathore, E. Makrlík, V. Kašička,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21780285
DOI
10.1002/jssc.201100092
Knihovny.cz E-zdroje
- MeSH
- benzenové deriváty analýza MeSH
- chromatografie afinitní MeSH
- elektroforéza kapilární MeSH
- ionty analýza MeSH
- kvantová teorie MeSH
- lithium analýza MeSH
- molekulární struktura MeSH
- osmolární koncentrace MeSH
- teplota MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this study, two complementary approaches, affinity capillary electrophoresis (ACE) and quantum mechanical density functional theory (DFT) calculations, have been employed for quantitative characterization and structure elucidation of the complex between hexaarylbenzene (HAB)-based receptor R and lithium ion Li(+) . First, by means of ACE, the apparent binding constant of LiR(+) complex (K LiR +) in methanol was determined from the dependence of the effective electrophoretic mobilities of LiR(+) complex on the concentration of lithium ions in the 25 mM Tris/50 mM chloroacetate background electrolyte (BGE) using non-linear regression analysis. Prior to regression analysis, the effective electrophoretic mobilities of the LiR(+) complex were corrected to reference temperature 25 °C and constant ionic strength 25 mM. The apparent binding constant of the LiR(+) complex in the above methanolic BGE was evaluated as logK LiR + = 1.15±0.09. Second, the most probable structures of nonhydrated LiR(+) and hydrated LiR(+)·3H(2)O complexes were derived by DFT calculations. The optimized structure of the hydrated LiR(+)·3H(2)O complex was found to be more realistic than the nonhydrated LiR(+) complex because of the considerably higher binding energy of LiR(+)·3H(2)O complex (500.4 kJ/mol) as compared with LiR(+) complex (427.5 kJ/mol).
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12022437
- 003
- CZ-PrNML
- 005
- 20170410102255.0
- 007
- ta
- 008
- 120806s2011 gw f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1002/jssc.201100092 $2 doi
- 035 __
- $a (PubMed)21780285
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Ehala, Sille $u Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nám., Czech Republic.
- 245 10
- $a Affinity capillary electrophoresis and quantum mechanical calculations applied to the investigation of hexaarylbenzene-based receptor binding with lithium ion / $c S. Ehala, P. Toman, R. Rathore, E. Makrlík, V. Kašička,
- 520 9_
- $a In this study, two complementary approaches, affinity capillary electrophoresis (ACE) and quantum mechanical density functional theory (DFT) calculations, have been employed for quantitative characterization and structure elucidation of the complex between hexaarylbenzene (HAB)-based receptor R and lithium ion Li(+) . First, by means of ACE, the apparent binding constant of LiR(+) complex (K LiR +) in methanol was determined from the dependence of the effective electrophoretic mobilities of LiR(+) complex on the concentration of lithium ions in the 25 mM Tris/50 mM chloroacetate background electrolyte (BGE) using non-linear regression analysis. Prior to regression analysis, the effective electrophoretic mobilities of the LiR(+) complex were corrected to reference temperature 25 °C and constant ionic strength 25 mM. The apparent binding constant of the LiR(+) complex in the above methanolic BGE was evaluated as logK LiR + = 1.15±0.09. Second, the most probable structures of nonhydrated LiR(+) and hydrated LiR(+)·3H(2)O complexes were derived by DFT calculations. The optimized structure of the hydrated LiR(+)·3H(2)O complex was found to be more realistic than the nonhydrated LiR(+) complex because of the considerably higher binding energy of LiR(+)·3H(2)O complex (500.4 kJ/mol) as compared with LiR(+) complex (427.5 kJ/mol).
- 650 _2
- $a benzenové deriváty $x analýza $7 D001555
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a chromatografie afinitní $7 D002846
- 650 _2
- $a elektroforéza kapilární $7 D019075
- 650 _2
- $a ionty $x analýza $7 D007477
- 650 _2
- $a lithium $x analýza $7 D008094
- 650 _2
- $a molekulární struktura $7 D015394
- 650 _2
- $a osmolární koncentrace $7 D009994
- 650 _2
- $a kvantová teorie $7 D011789
- 650 _2
- $a teplota $7 D013696
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Toman, Petr
- 700 1_
- $a Rathore, Rajendra
- 700 1_
- $a Makrlík, Emanuel
- 700 1_
- $a Kašička, Václav
- 773 0_
- $w MED00006463 $t Journal of separation science $x 1615-9314 $g Roč. 34, č. 18 (2011), s. 2433-2440
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21780285 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120806 $b ABA008
- 991 __
- $a 20170410102553 $b ABA008
- 999 __
- $a ok $b bmc $g 944350 $s 779734
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 34 $c 18 $d 2433-2440 $e 20110721 $i 1615-9314 $m Journal of separation science $n J Sep Sci $x MED00006463
- LZP __
- $a Pubmed-20120806/12/01