Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Determination of butoxyacetic acid (biomarker of ethylene glycol monobutyl ether exposure) in human urine candidate reference material

I. Šperlingová, L. Dabrowská, V. Stránský, Š. Dušková, J. Kučera, M. Tvrdíková, M. Tichý

. 2010 ; 397 (2) : 433-438.

Jazyk angličtina Země Německo

Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12026020

Grantová podpora
NS9644 MZ0 CEP - Centrální evidence projektů

Digitální knihovna NLK
Plný text - Článek
Zdroj

E-zdroje Online Plný text

NLK ProQuest Central od 2001-01-01 do 2010-12-31
Medline Complete (EBSCOhost) od 2003-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2001-01-01 do 2010-12-31

Ethylene glycol monobutyl ether (EGBE), an industrial solvent, is absorbed by the body not only by inhalation but also by dermal absorption (liquid or vapour). EGBE is metabolized to butoxyacetic acid (BAA). Pooled freeze-dried urine candidate reference material (RM) was prepared from urine obtained from persons occupationally exposed to EGBE. This material has the advantage of containing butoxyacetic acid in both the free and conjugated (glutamine and glycine) forms, as found in native urine. In all GC method modifications used, acid hydrolysis was used to release BAA from its conjugated form. The amount of butoxyacetic acid in homogeneity and stability testing was measured by GC after derivatisation with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide. Detection was by MS in EI mode, in the authors' laboratory. For interlaboratory comparison of the reference material GC methods with MS, FID, and ECD were used. Different extraction solvents (dichloromethane-isopropanol 2:1, ethyl acetate, or dichloromethane) and derivatisation reagents (trimethylsilyldiazomethane, N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide) were used. Using ANOVA (at the statistical level alpha = 0.05) no changes were found in the concentration of butoxyacetic acid during fifteen month isochronous stability testing, or in homogeneity testing. The uncertainty contributions were u (h) = 8.8 mg L(-1) and u (s) = 6.5 mg L(-1). The concentration of butoxyacetic acid in freeze-dried urine RM was evaluated from the results of eight laboratory data sets within an interlaboratory comparison by use of the interactive statistical software IPECA. The contribution to total uncertainty derived from interlaboratory comparison was u (i) = 12.7 mg L(-1). The reference value (c = 273 +/- 33 mg L(-1)) is an unweighted arithmetic average of accepted results. The value is traceable to the pure butoxyacetic acid (98% w/w; Acros Organic #257760010) used as calibrant. The uncertainty given is combined expanded uncertainty derived from the results from interlaboratory comparison, and from homogeneity and stability tests (k = 2). The reference material will be used to verify method performance in the biological monitoring of occupational exposure to EGBE.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12026020
003      
CZ-PrNML
005      
20141013124132.0
007      
ta
008      
120817s2010 gw f 000 0#eng||
009      
AR
024    7_
$a 10.1007/s00216-009-3148-3 $2 doi
035    __
$a (PubMed)19795109
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Šperlingová, Ilona $7 xx0081921 $u National Institute of Public Health, Srobárova 48, 100 42, Prague, Czech Republic. sperling@szu.cz
245    10
$a Determination of butoxyacetic acid (biomarker of ethylene glycol monobutyl ether exposure) in human urine candidate reference material / $c I. Šperlingová, L. Dabrowská, V. Stránský, Š. Dušková, J. Kučera, M. Tvrdíková, M. Tichý
520    9_
$a Ethylene glycol monobutyl ether (EGBE), an industrial solvent, is absorbed by the body not only by inhalation but also by dermal absorption (liquid or vapour). EGBE is metabolized to butoxyacetic acid (BAA). Pooled freeze-dried urine candidate reference material (RM) was prepared from urine obtained from persons occupationally exposed to EGBE. This material has the advantage of containing butoxyacetic acid in both the free and conjugated (glutamine and glycine) forms, as found in native urine. In all GC method modifications used, acid hydrolysis was used to release BAA from its conjugated form. The amount of butoxyacetic acid in homogeneity and stability testing was measured by GC after derivatisation with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide. Detection was by MS in EI mode, in the authors' laboratory. For interlaboratory comparison of the reference material GC methods with MS, FID, and ECD were used. Different extraction solvents (dichloromethane-isopropanol 2:1, ethyl acetate, or dichloromethane) and derivatisation reagents (trimethylsilyldiazomethane, N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide) were used. Using ANOVA (at the statistical level alpha = 0.05) no changes were found in the concentration of butoxyacetic acid during fifteen month isochronous stability testing, or in homogeneity testing. The uncertainty contributions were u (h) = 8.8 mg L(-1) and u (s) = 6.5 mg L(-1). The concentration of butoxyacetic acid in freeze-dried urine RM was evaluated from the results of eight laboratory data sets within an interlaboratory comparison by use of the interactive statistical software IPECA. The contribution to total uncertainty derived from interlaboratory comparison was u (i) = 12.7 mg L(-1). The reference value (c = 273 +/- 33 mg L(-1)) is an unweighted arithmetic average of accepted results. The value is traceable to the pure butoxyacetic acid (98% w/w; Acros Organic #257760010) used as calibrant. The uncertainty given is combined expanded uncertainty derived from the results from interlaboratory comparison, and from homogeneity and stability tests (k = 2). The reference material will be used to verify method performance in the biological monitoring of occupational exposure to EGBE.
650    _2
$a ethylenglykoly $x metabolismus $7 D005026
650    _2
$a plynová chromatografie s hmotnostně spektrometrickou detekcí $x metody $7 D008401
650    _2
$a glykoláty $x normy $x moč $7 D006016
650    _2
$a lidé $7 D006801
650    _2
$a pracovní expozice $7 D016273
650    _2
$a referenční standardy $7 D012015
655    _2
$a hodnotící studie $7 D023362
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Dabrowská, Ludmila $7 xx0081922
700    1_
$a Stránský, Vladimír $7 xx0053401
700    1_
$a Dušková, Šárka $7 xx0166992
700    1_
$a Kučera, Jan, $d 1946- $7 mzk2009517406 $u Nuclear Physics Institute, Řež
700    1#
$a Tvrdíková, Monika. $7 _AN040132
700    1_
$a Tichý, Miloň, $d 1937- $7 jn20000402359
773    0_
$w MED00006638 $t Analytical and bioanalytical chemistry $x 1618-2650 $g Roč. 397, č. 2 (2010), s. 433-438
856    41
$u https://pubmed.ncbi.nlm.nih.gov/19795109 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120817 $b ABA008
991    __
$a 20141013124524 $b ABA008
999    __
$a ok $b bmc $g 948062 $s 783366
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2010 $b 397 $c 2 $d 433-438 $i 1618-2650 $m Analytical and bioanalytical chemistry $n Anal Bioanal Chem $x MED00006638
GRA    __
$a NS9644 $p MZ0
LZP    __
$a Pubmed-20120817/10/03

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...