• Something wrong with this record ?

Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?

P. Flegontov, MW. Gray, G. Burger, J. Lukeš,

. 2011 ; 57 (4) : 225-32. [pub] 20110505

Language English Country United States

Document type Journal Article, Review

E-resources Online Full text

NLK ProQuest Central from 2003-01-01 to 1 year ago
Medline Complete (EBSCOhost) from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest) from 2003-01-01 to 1 year ago

Phylum Euglenozoa comprises three groups of eukaryotic microbes (kinetoplastids, diplonemids, and euglenids), the mitochondrial (mt) genomes of which exhibit radically different modes of organization and expression. Gene fragmentation is a striking feature of both euglenid and diplonemid mtDNAs. To rationalize the emergence of these highly divergent mtDNA types and the existence of insertion/deletion RNA editing (in kinetoplastids) and trans-splicing (in diplonemids), we propose that in the mitochondrion of the common evolutionary ancestor of Euglenozoa, small expressed gene fragments promoted a rampant neutral evolutionary pathway. Interactions between small antisense transcripts of these gene fragments and full-length transcripts, assisted by RNA-processing enzymes, permitted the emergence of RNA editing and/or trans-splicing activities, allowing the system to tolerate indel mutations and further gene fragmentation, respectively, and leading to accumulation of additional mutations. In this way, dramatically different mitochondrial genome structures and RNA-processing machineries were able to evolve. The paradigm of constructive neutral evolution acting on the widely different mitochondrial genetic systems in Euglenozoa posits the accretion of initially neutral molecular interactions by genetic drift, leading inevitably to the observed 'irremediable complexity'.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12027563
003      
CZ-PrNML
005      
20121207092946.0
007      
ta
008      
120817e20110505xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1007/s00294-011-0340-8 $2 doi
035    __
$a (PubMed)21544620
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Flegontov, Pavel, $d 1983- $7 _AN069446 $u Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005, České Budĕjovice, Czech Republic.
245    10
$a Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa? / $c P. Flegontov, MW. Gray, G. Burger, J. Lukeš,
520    9_
$a Phylum Euglenozoa comprises three groups of eukaryotic microbes (kinetoplastids, diplonemids, and euglenids), the mitochondrial (mt) genomes of which exhibit radically different modes of organization and expression. Gene fragmentation is a striking feature of both euglenid and diplonemid mtDNAs. To rationalize the emergence of these highly divergent mtDNA types and the existence of insertion/deletion RNA editing (in kinetoplastids) and trans-splicing (in diplonemids), we propose that in the mitochondrion of the common evolutionary ancestor of Euglenozoa, small expressed gene fragments promoted a rampant neutral evolutionary pathway. Interactions between small antisense transcripts of these gene fragments and full-length transcripts, assisted by RNA-processing enzymes, permitted the emergence of RNA editing and/or trans-splicing activities, allowing the system to tolerate indel mutations and further gene fragmentation, respectively, and leading to accumulation of additional mutations. In this way, dramatically different mitochondrial genome structures and RNA-processing machineries were able to evolve. The paradigm of constructive neutral evolution acting on the widely different mitochondrial genetic systems in Euglenozoa posits the accretion of initially neutral molecular interactions by genetic drift, leading inevitably to the observed 'irremediable complexity'.
650    _2
$a replikace DNA $7 D004261
650    _2
$a Euglenozoa $x genetika $7 D056898
650    _2
$a molekulární evoluce $7 D019143
650    _2
$a genom mitochondriální $7 D054629
650    _2
$a modely genetické $7 D008957
650    _2
$a editace RNA $7 D017393
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Gray, Michael W
700    1_
$a Burger, Gertraud
700    1_
$a Lukeš, Julius
773    0_
$w MED00001271 $t Current genetics $x 1432-0983 $g Roč. 57, č. 4 (20110505), s. 225-32
856    41
$u https://pubmed.ncbi.nlm.nih.gov/21544620 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m
990    __
$a 20120817 $b ABA008
991    __
$a 20121207093020 $b ABA008
999    __
$a ok $b bmc $g 949605 $s 784909
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2011 $b 57 $c 4 $d 225-32 $e 20110505 $i 1432-0983 $m Current genetics $n Curr Genet $x MED00001271
LZP    __
$a Pubmed-20120817/11/03

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...