Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
- MeSH
- editace RNA MeSH
- Euglenozoa genetika MeSH
- genom mitochondriální * MeSH
- modely genetické MeSH
- molekulární evoluce * MeSH
- replikace DNA MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Phylum Euglenozoa comprises three groups of eukaryotic microbes (kinetoplastids, diplonemids, and euglenids), the mitochondrial (mt) genomes of which exhibit radically different modes of organization and expression. Gene fragmentation is a striking feature of both euglenid and diplonemid mtDNAs. To rationalize the emergence of these highly divergent mtDNA types and the existence of insertion/deletion RNA editing (in kinetoplastids) and trans-splicing (in diplonemids), we propose that in the mitochondrion of the common evolutionary ancestor of Euglenozoa, small expressed gene fragments promoted a rampant neutral evolutionary pathway. Interactions between small antisense transcripts of these gene fragments and full-length transcripts, assisted by RNA-processing enzymes, permitted the emergence of RNA editing and/or trans-splicing activities, allowing the system to tolerate indel mutations and further gene fragmentation, respectively, and leading to accumulation of additional mutations. In this way, dramatically different mitochondrial genome structures and RNA-processing machineries were able to evolve. The paradigm of constructive neutral evolution acting on the widely different mitochondrial genetic systems in Euglenozoa posits the accretion of initially neutral molecular interactions by genetic drift, leading inevitably to the observed 'irremediable complexity'.
Zobrazit více v PubMed
Mol Biol (Mosk). 2003 Jul-Aug;37(4):637-42 PubMed
Int J Parasitol. 2002 Aug;32(9):1071-84 PubMed
IUBMB Life. 2006 Feb;58(2):91-6 PubMed
Trends Parasitol. 2010 Sep;26(9):424-7 PubMed
Mol Biol Evol. 2011 Jan;28(1):53-8 PubMed
RNA. 1996 Nov;2(11):1153-60 PubMed
EMBO J. 1994 Dec 1;13(23):5689-700 PubMed
Curr Genet. 1997 Mar;31(3):208-13 PubMed
Mol Phylogenet Evol. 2004 Jan;30(1):201-12 PubMed
EMBO Rep. 2006 Nov;7(11):1128-33 PubMed
Science. 2003 Nov 21;302(5649):1401-4 PubMed
Science. 2010 Nov 12;330(6006):920-1 PubMed
Annu Rev Genet. 2004;38:477-524 PubMed
EMBO J. 2005 Dec 7;24(23):4029-40 PubMed
Eukaryot Cell. 2005 Jun;4(6):1137-46 PubMed
Nucleic Acids Res. 2011 Feb;39(3):979-88 PubMed
Microbiol Mol Biol Rev. 1997 Mar;61(1):105-20 PubMed
Protist. 2007 Jul;158(3):385-96 PubMed
Curr Opin Microbiol. 2002 Dec;5(6):620-6 PubMed
Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3859-64 PubMed
Bioessays. 2009 Feb;31(2):237-45 PubMed
Curr Genet. 2000 Aug;38(2):95-103 PubMed
PLoS One. 2008 Feb 13;3(2):e1566 PubMed
Nucleic Acids Res. 1998 Mar 1;26(5):1205-13 PubMed
Mol Biol Evol. 2011 Sep;28(9):2425-8 PubMed
Trends Genet. 1993 Aug;9(8):265-8 PubMed
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):E25; author reply E26 PubMed
J Mol Evol. 1999 Aug;49(2):169-81 PubMed
Eukaryot Cell. 2002 Aug;1(4):495-502 PubMed
Mol Biol Evol. 2007 Jul;24(7):1528-36 PubMed
Nucleic Acids Res. 2009 Mar;37(4):1011-34 PubMed
Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1861-1875 PubMed
Nature. 1993 May 13;363(6425):179-82 PubMed
Mol Genet Genomics. 2011 Jan;285(1):19-31 PubMed
Proc Biol Sci. 1999 Mar 22;266(1419):611-20 PubMed
Bioessays. 2011 May;33(5):344-9 PubMed
J Mol Biol. 2002 Jul 19;320(4):727-39 PubMed
Curr Genet. 2005 Nov;48(5):277-99 PubMed
Ann N Y Acad Sci. 1999 May 18;870:190-205 PubMed
Trends Genet. 1990 Jun;6(6):177-81 PubMed
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):6986-93 PubMed
EMBO J. 1994 Nov 1;13(21):5086-98 PubMed
Trends Genet. 1997 Jan;13(1):6-9 PubMed
IUBMB Life. 2011 Jul;63(7):528-37 PubMed
Trends Parasitol. 2005 Aug;21(8):363-9 PubMed
Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604 PubMed
J Mol Evol. 1997 Mar;44(3):341-7 PubMed
Nature. 1994 Mar 24;368(6469):345-8 PubMed
J Eukaryot Microbiol. 2005 Sep-Oct;52(5):399-451 PubMed
EMBO J. 1998 Feb 2;17(3):838-46 PubMed
Nucleic Acids Res. 1992 Jun 11;20(11):2717-24 PubMed
Trends Genet. 2008 Jul;24(7):328-35 PubMed
RNA. 2005 Jan;11(1):29-37 PubMed
IUBMB Life. 2003 Apr-May;55(4-5):227-33 PubMed
Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9963-70 PubMed
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1999-2004 PubMed
RNA. 2001 Sep;7(9):1335-47 PubMed
Science. 2007 Oct 19;318(5849):415 PubMed
Trends Parasitol. 2010 Dec;26(12):557-8 PubMed
A Uniquely Complex Mitochondrial Proteome from Euglena gracilis
Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids
From simple to supercomplex: mitochondrial genomes of euglenozoan protists
Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis