Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?

. 2011 Aug ; 57 (4) : 225-32. [epub] 20110505

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid21544620

Phylum Euglenozoa comprises three groups of eukaryotic microbes (kinetoplastids, diplonemids, and euglenids), the mitochondrial (mt) genomes of which exhibit radically different modes of organization and expression. Gene fragmentation is a striking feature of both euglenid and diplonemid mtDNAs. To rationalize the emergence of these highly divergent mtDNA types and the existence of insertion/deletion RNA editing (in kinetoplastids) and trans-splicing (in diplonemids), we propose that in the mitochondrion of the common evolutionary ancestor of Euglenozoa, small expressed gene fragments promoted a rampant neutral evolutionary pathway. Interactions between small antisense transcripts of these gene fragments and full-length transcripts, assisted by RNA-processing enzymes, permitted the emergence of RNA editing and/or trans-splicing activities, allowing the system to tolerate indel mutations and further gene fragmentation, respectively, and leading to accumulation of additional mutations. In this way, dramatically different mitochondrial genome structures and RNA-processing machineries were able to evolve. The paradigm of constructive neutral evolution acting on the widely different mitochondrial genetic systems in Euglenozoa posits the accretion of initially neutral molecular interactions by genetic drift, leading inevitably to the observed 'irremediable complexity'.

Zobrazit více v PubMed

Mol Biol (Mosk). 2003 Jul-Aug;37(4):637-42 PubMed

Int J Parasitol. 2002 Aug;32(9):1071-84 PubMed

IUBMB Life. 2006 Feb;58(2):91-6 PubMed

Trends Parasitol. 2010 Sep;26(9):424-7 PubMed

Mol Biol Evol. 2011 Jan;28(1):53-8 PubMed

RNA. 1996 Nov;2(11):1153-60 PubMed

EMBO J. 1994 Dec 1;13(23):5689-700 PubMed

Curr Genet. 1997 Mar;31(3):208-13 PubMed

Mol Phylogenet Evol. 2004 Jan;30(1):201-12 PubMed

EMBO Rep. 2006 Nov;7(11):1128-33 PubMed

Science. 2003 Nov 21;302(5649):1401-4 PubMed

Science. 2010 Nov 12;330(6006):920-1 PubMed

Annu Rev Genet. 2004;38:477-524 PubMed

EMBO J. 2005 Dec 7;24(23):4029-40 PubMed

Eukaryot Cell. 2005 Jun;4(6):1137-46 PubMed

Nucleic Acids Res. 2011 Feb;39(3):979-88 PubMed

Microbiol Mol Biol Rev. 1997 Mar;61(1):105-20 PubMed

Protist. 2007 Jul;158(3):385-96 PubMed

Curr Opin Microbiol. 2002 Dec;5(6):620-6 PubMed

Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3859-64 PubMed

Bioessays. 2009 Feb;31(2):237-45 PubMed

Curr Genet. 2000 Aug;38(2):95-103 PubMed

PLoS One. 2008 Feb 13;3(2):e1566 PubMed

Nucleic Acids Res. 1998 Mar 1;26(5):1205-13 PubMed

Mol Biol Evol. 2011 Sep;28(9):2425-8 PubMed

Trends Genet. 1993 Aug;9(8):265-8 PubMed

Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):E25; author reply E26 PubMed

J Mol Evol. 1999 Aug;49(2):169-81 PubMed

Eukaryot Cell. 2002 Aug;1(4):495-502 PubMed

Mol Biol Evol. 2007 Jul;24(7):1528-36 PubMed

Nucleic Acids Res. 2009 Mar;37(4):1011-34 PubMed

Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1861-1875 PubMed

Nature. 1993 May 13;363(6425):179-82 PubMed

Mol Genet Genomics. 2011 Jan;285(1):19-31 PubMed

Proc Biol Sci. 1999 Mar 22;266(1419):611-20 PubMed

Bioessays. 2011 May;33(5):344-9 PubMed

J Mol Biol. 2002 Jul 19;320(4):727-39 PubMed

Curr Genet. 2005 Nov;48(5):277-99 PubMed

Ann N Y Acad Sci. 1999 May 18;870:190-205 PubMed

Trends Genet. 1990 Jun;6(6):177-81 PubMed

Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):6986-93 PubMed

EMBO J. 1994 Nov 1;13(21):5086-98 PubMed

Trends Genet. 1997 Jan;13(1):6-9 PubMed

IUBMB Life. 2011 Jul;63(7):528-37 PubMed

Trends Parasitol. 2005 Aug;21(8):363-9 PubMed

Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604 PubMed

J Mol Evol. 1997 Mar;44(3):341-7 PubMed

Nature. 1994 Mar 24;368(6469):345-8 PubMed

J Eukaryot Microbiol. 2005 Sep-Oct;52(5):399-451 PubMed

EMBO J. 1998 Feb 2;17(3):838-46 PubMed

Nucleic Acids Res. 1992 Jun 11;20(11):2717-24 PubMed

Trends Genet. 2008 Jul;24(7):328-35 PubMed

RNA. 2005 Jan;11(1):29-37 PubMed

IUBMB Life. 2003 Apr-May;55(4-5):227-33 PubMed

Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9963-70 PubMed

Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1999-2004 PubMed

RNA. 2001 Sep;7(9):1335-47 PubMed

Science. 2007 Oct 19;318(5849):415 PubMed

Trends Parasitol. 2010 Dec;26(12):557-8 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Uniquely Complex Mitochondrial Proteome from Euglena gracilis

. 2020 Aug 01 ; 37 (8) : 2173-2191.

Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids

. 2020 Mar 18 ; 48 (5) : 2694-2708.

The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome

. 2020 Mar 02 ; 18 (1) : 22. [epub] 20200302

Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool

. 2018 Jan 25 ; 46 (2) : 765-781.

Post-transcriptional mending of gene sequences: Looking under the hood of mitochondrial gene expression in diplonemids

. 2016 Dec ; 13 (12) : 1204-1211. [epub] 20161007

From simple to supercomplex: mitochondrial genomes of euglenozoan protists

. 2016 ; 5 () : . [epub] 20160323

Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis

. 2015 Nov 20 ; 7 (12) : 3358-67. [epub] 20151120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...