• Je něco špatně v tomto záznamu ?

Stretching the rules: monocentric chromosomes with multiple centromere domains

P. Neumann, A. Navrátilová, E. Schroeder-Reiter, A. Koblížková, V. Steinbauerová, E. Chocholová, P. Novák, G. Wanner, J. Macas

. 2012 ; 8 (6) : e1002777.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12034444

The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel "meta-polycentric" functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12034444
003      
CZ-PrNML
005      
20160610080436.0
007      
ta
008      
121023s2012 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pgen.1002777 $2 doi
035    __
$a (PubMed)22737088
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Neumann, Pavel $u Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic. neumann@umbr.cas.cz
245    10
$a Stretching the rules: monocentric chromosomes with multiple centromere domains / $c P. Neumann, A. Navrátilová, E. Schroeder-Reiter, A. Koblížková, V. Steinbauerová, E. Chocholová, P. Novák, G. Wanner, J. Macas
520    9_
$a The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel "meta-polycentric" functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a centromera $x genetika $7 D002503
650    _2
$a segregace chromozomů $x genetika $7 D020090
650    _2
$a chromozomy $x genetika $7 D002875
650    _2
$a satelitní DNA $x genetika $7 D004276
650    _2
$a histony $x genetika $7 D006657
650    _2
$a molekulární sekvence - údaje $7 D008969
650    _2
$a hrách setý $x cytologie $x genetika $7 D018532
650    _2
$a repetitivní sekvence nukleových kyselin $7 D012091
650    _2
$a retroelementy $x genetika $7 D018626
650    _2
$a tubulin $x genetika $7 D014404
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Navrátilová, Alice $u Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
700    1_
$a Schroeder-Reiter, Elizabeth $u Ultrastructural Research, Biozentrum der LMU München, Planegg-Martinsried, Germany
700    1_
$a Koblížková, Andrea $u Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
700    1_
$a Steinbauerová, Veronika $u Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
700    1_
$a Chocholová, Eva $7 xx0138073 $u Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
700    1_
$a Novák, Petr $u Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
700    1_
$a Wanner, Gerhard $u Ultrastructural Research, Biozentrum der LMU München, Planegg-Martinsried, Germany
700    1_
$a Macas, Jiří $7 xx0060672 $u Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
773    0_
$w MED00008920 $t PLoS genetics $x 1553-7404 $g Roč. 8, č. 6 (2012), s. e1002777
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22737088 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20121023 $b ABA008
991    __
$a 20160610080613 $b ABA008
999    __
$a ok $b bmc $g 956454 $s 791941
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 8 $c 6 $d e1002777 $i 1553-7404 $m PLoS genetics $n PLoS Genet $x MED00008920
LZP    __
$b NLK122 $a Pubmed-20121023

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...