Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering

M. Parizek, TE. Douglas, K. Novotna, A. Kromka, MA. Brady, A. Renzing, E. Voss, M. Jarosova, L. Palatinus, P. Tesarek, P. Ryparova, V. Lisa, AM. dos Santos, L. Bacakova

. 2012 ; 7 () : 1931-1951.

Jazyk angličtina Země Nový Zéland

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12034480

BACKGROUND: Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. METHODS: In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). RESULTS: In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm(2) versus 1.28 ± 0.09 μm(2) in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1-7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion molecule-1, MG-63 cells, and RAW 264.7 macrophages on these membranes did not show considerable inflammatory activity. CONCLUSION: This study shows that nanofibrous PLGA membranes loaded with diamond nanoparticles have interesting potential for use in bone tissue engineering.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12034480
003      
CZ-PrNML
005      
20160602161315.0
007      
ta
008      
121023s2012 nz f 000 0|eng||
009      
AR
024    7_
$a 10.2147/ijn.s26665 $2 doi
035    __
$a (PubMed)22619532
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a nz
100    1_
$a Pařízek, Martin $7 xx0137109 $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
245    10
$a Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering / $c M. Parizek, TE. Douglas, K. Novotna, A. Kromka, MA. Brady, A. Renzing, E. Voss, M. Jarosova, L. Palatinus, P. Tesarek, P. Ryparova, V. Lisa, AM. dos Santos, L. Bacakova
520    9_
$a BACKGROUND: Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. METHODS: In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). RESULTS: In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm(2) versus 1.28 ± 0.09 μm(2) in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1-7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion molecule-1, MG-63 cells, and RAW 264.7 macrophages on these membranes did not show considerable inflammatory activity. CONCLUSION: This study shows that nanofibrous PLGA membranes loaded with diamond nanoparticles have interesting potential for use in bone tissue engineering.
650    _2
$a mikrofilamenta $x metabolismus $7 D008841
650    _2
$a zvířata $7 D000818
650    _2
$a kostní náhrady $x chemie $7 D018786
650    _2
$a buněčná adheze $7 D002448
650    _2
$a buněčné linie $7 D002460
650    _2
$a proliferace buněk $7 D049109
650    _2
$a viabilita buněk $7 D002470
650    _2
$a diamant $x chemie $7 D018130
650    _2
$a lidé $7 D006801
650    _2
$a kyselina mléčná $x chemie $7 D019344
650    _2
$a testování materiálů $7 D008422
650    _2
$a myši $7 D051379
650    _2
$a mikroskopie elektronová rastrovací $7 D008855
650    _2
$a transmisní elektronová mikroskopie $7 D046529
650    _2
$a nanovlákna $x chemie $x ultrastruktura $7 D057139
650    _2
$a nanomedicína $7 D050997
650    _2
$a nanočástice $x chemie $x ultrastruktura $7 D053758
650    _2
$a osteoblasty $x cytologie $x imunologie $x fyziologie $7 D010006
650    _2
$a kyselina polyglykolová $x chemie $7 D011100
650    _2
$a tkáňové inženýrství $x metody $7 D023822
650    _2
$a tkáňové podpůrné struktury $x chemie $7 D054457
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Douglas, Timothy E L $u Polymer Chemistry and Biomaterials Group, Ghent University, Ghent, Belgium
700    1_
$a Novotna, Katarina $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
700    1_
$a Kromka, Alexander, $d 1971- $u Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic $7 jx20091229004
700    1_
$a Brady, Mariea A. $u Department of Oral and Maxillofacial Surgery, University of Kiel, Kiel, Germany
700    1_
$a Renzing, Andrea $u Department of Oral and Maxillofacial Surgery, University of Kiel, Kiel, Germany
700    1_
$a Voss, Eske
700    1_
$a Jarosova, Marketa $u Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
700    1_
$a Palatinus, Lukas $u Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
700    1_
$a Tesarek, Pavel $u Czech Technical University in Prague, Faculty of Civil Engineering, Prague, Czech Republic
700    1_
$a Ryparova, Pavla $u Czech Technical University in Prague, Faculty of Civil Engineering, Prague, Czech Republic
700    1_
$a Lisá, Věra $7 xx0063962 $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
700    1_
$a dos Santos, Ana M. $u Polymer Chemistry and Biomaterials Group, Ghent University, Ghent, Belgium
700    1_
$a Bačáková, Lucie, $d 1958- $7 xx0070525 $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
773    0_
$w MED00176143 $t International journal of nanomedicine $x 1178-2013 $g Roč. 7(2012), s. 1931-1951
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22619532 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20121023 $b ABA008
991    __
$a 20160602161050 $b ABA008
999    __
$a ok $b bmc $g 956490 $s 791977
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 7 $d 1931-1951 $i 1178-2013 $m International journal of nanomedicine $n Int J Nanomedicine $x MED00176143
LZP    __
$b NLK112 $a Pubmed-20121023

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...