-
Je něco špatně v tomto záznamu ?
Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering
M. Parizek, TE. Douglas, K. Novotna, A. Kromka, MA. Brady, A. Renzing, E. Voss, M. Jarosova, L. Palatinus, P. Tesarek, P. Ryparova, V. Lisa, AM. dos Santos, L. Bacakova
Jazyk angličtina Země Nový Zéland
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2012-01-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2009-01-01
Taylor & Francis Open Access
od 2006-09-01
Medline Complete (EBSCOhost)
od 2012-01-01
Health & Medicine (ProQuest)
od 2012-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
PubMed
22619532
DOI
10.2147/ijn.s26665
Knihovny.cz E-zdroje
- MeSH
- buněčná adheze MeSH
- buněčné linie MeSH
- diamant chemie MeSH
- kostní náhrady chemie MeSH
- kyselina mléčná chemie MeSH
- kyselina polyglykolová chemie MeSH
- lidé MeSH
- mikrofilamenta metabolismus MeSH
- mikroskopie elektronová rastrovací MeSH
- myši MeSH
- nanočástice chemie ultrastruktura MeSH
- nanomedicína MeSH
- nanovlákna chemie ultrastruktura MeSH
- osteoblasty cytologie imunologie fyziologie MeSH
- proliferace buněk MeSH
- testování materiálů MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- transmisní elektronová mikroskopie MeSH
- viabilita buněk MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. METHODS: In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). RESULTS: In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm(2) versus 1.28 ± 0.09 μm(2) in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1-7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion molecule-1, MG-63 cells, and RAW 264.7 macrophages on these membranes did not show considerable inflammatory activity. CONCLUSION: This study shows that nanofibrous PLGA membranes loaded with diamond nanoparticles have interesting potential for use in bone tissue engineering.
Czech Technical University Prague Faculty of Civil Engineering Prague Czech Republic
Department of Oral and Maxillofacial Surgery University of Kiel Kiel Germany
Institute of Physics Academy of Sciences of the Czech Republic Prague Czech Republic
Polymer Chemistry and Biomaterials Group Ghent University Ghent Belgium
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12034480
- 003
- CZ-PrNML
- 005
- 20160602161315.0
- 007
- ta
- 008
- 121023s2012 nz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.2147/ijn.s26665 $2 doi
- 035 __
- $a (PubMed)22619532
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a nz
- 100 1_
- $a Pařízek, Martin $7 xx0137109 $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 245 10
- $a Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering / $c M. Parizek, TE. Douglas, K. Novotna, A. Kromka, MA. Brady, A. Renzing, E. Voss, M. Jarosova, L. Palatinus, P. Tesarek, P. Ryparova, V. Lisa, AM. dos Santos, L. Bacakova
- 520 9_
- $a BACKGROUND: Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. METHODS: In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). RESULTS: In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm(2) versus 1.28 ± 0.09 μm(2) in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1-7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion molecule-1, MG-63 cells, and RAW 264.7 macrophages on these membranes did not show considerable inflammatory activity. CONCLUSION: This study shows that nanofibrous PLGA membranes loaded with diamond nanoparticles have interesting potential for use in bone tissue engineering.
- 650 _2
- $a mikrofilamenta $x metabolismus $7 D008841
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a kostní náhrady $x chemie $7 D018786
- 650 _2
- $a buněčná adheze $7 D002448
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a proliferace buněk $7 D049109
- 650 _2
- $a viabilita buněk $7 D002470
- 650 _2
- $a diamant $x chemie $7 D018130
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a kyselina mléčná $x chemie $7 D019344
- 650 _2
- $a testování materiálů $7 D008422
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a mikroskopie elektronová rastrovací $7 D008855
- 650 _2
- $a transmisní elektronová mikroskopie $7 D046529
- 650 _2
- $a nanovlákna $x chemie $x ultrastruktura $7 D057139
- 650 _2
- $a nanomedicína $7 D050997
- 650 _2
- $a nanočástice $x chemie $x ultrastruktura $7 D053758
- 650 _2
- $a osteoblasty $x cytologie $x imunologie $x fyziologie $7 D010006
- 650 _2
- $a kyselina polyglykolová $x chemie $7 D011100
- 650 _2
- $a tkáňové inženýrství $x metody $7 D023822
- 650 _2
- $a tkáňové podpůrné struktury $x chemie $7 D054457
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Douglas, Timothy E L $u Polymer Chemistry and Biomaterials Group, Ghent University, Ghent, Belgium
- 700 1_
- $a Novotna, Katarina $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 700 1_
- $a Kromka, Alexander, $d 1971- $u Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic $7 jx20091229004
- 700 1_
- $a Brady, Mariea A. $u Department of Oral and Maxillofacial Surgery, University of Kiel, Kiel, Germany
- 700 1_
- $a Renzing, Andrea $u Department of Oral and Maxillofacial Surgery, University of Kiel, Kiel, Germany
- 700 1_
- $a Voss, Eske
- 700 1_
- $a Jarosova, Marketa $u Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 700 1_
- $a Palatinus, Lukas $u Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 700 1_
- $a Tesarek, Pavel $u Czech Technical University in Prague, Faculty of Civil Engineering, Prague, Czech Republic
- 700 1_
- $a Ryparova, Pavla $u Czech Technical University in Prague, Faculty of Civil Engineering, Prague, Czech Republic
- 700 1_
- $a Lisá, Věra $7 xx0063962 $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 700 1_
- $a dos Santos, Ana M. $u Polymer Chemistry and Biomaterials Group, Ghent University, Ghent, Belgium
- 700 1_
- $a Bačáková, Lucie, $d 1958- $7 xx0070525 $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 773 0_
- $w MED00176143 $t International journal of nanomedicine $x 1178-2013 $g Roč. 7(2012), s. 1931-1951
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22619532 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20121023 $b ABA008
- 991 __
- $a 20160602161050 $b ABA008
- 999 __
- $a ok $b bmc $g 956490 $s 791977
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 7 $d 1931-1951 $i 1178-2013 $m International journal of nanomedicine $n Int J Nanomedicine $x MED00176143
- LZP __
- $b NLK112 $a Pubmed-20121023