-
Something wrong with this record ?
In silico mutagenesis and docking study of Ralstonia solanacearum RSL lectin: performance of docking software to predict saccharide binding
S. K. Mishra, J. Adam, M. Wimmerová, J. Koča
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
22506916
DOI
10.1021/ci200529n
Knihovny.cz E-resources
- MeSH
- Crystallography, X-Ray MeSH
- Lectins chemistry genetics metabolism MeSH
- Models, Molecular MeSH
- Molecular Sequence Data MeSH
- Mutagenesis MeSH
- Computer Simulation MeSH
- Ralstonia solanacearum chemistry genetics metabolism MeSH
- Receptors, Cell Surface chemistry MeSH
- Carbohydrate Sequence MeSH
- Software MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this study, in silico mutagenesis and docking in Ralstonia solanacearum lectin (RSL) were carried out, and the ability of several docking software programs to calculate binding affinity was evaluated. In silico mutation of six amino acid residues (Agr17, Glu28, Gly39, Ala40, Trp76, and Trp81) was done, and a total of 114 in silico mutants of RSL were docked with Me-α-L-fucoside. Our results show that polar residues Arg17 and Glu28, as well as nonpolar amino acids Trp76 and Trp81, are crucial for binding. Gly39 may also influence ligand binding because any mutations at this position lead to a change in the binding pocket shape. The Ala40 residue was found to be the most interesting residue for mutagenesis and can affect the selectivity and/or affinity. In general, the docking software used performs better for high affinity binders and fails to place the binding affinities in the correct order.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12034573
- 003
- CZ-PrNML
- 005
- 20160902161417.0
- 007
- ta
- 008
- 121023s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/ci200529n $2 doi
- 035 __
- $a (PubMed)22506916
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Mishra, Rama K. $7 mzk2007394939 $u Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- 245 10
- $a In silico mutagenesis and docking study of Ralstonia solanacearum RSL lectin: performance of docking software to predict saccharide binding / $c S. K. Mishra, J. Adam, M. Wimmerová, J. Koča
- 520 9_
- $a In this study, in silico mutagenesis and docking in Ralstonia solanacearum lectin (RSL) were carried out, and the ability of several docking software programs to calculate binding affinity was evaluated. In silico mutation of six amino acid residues (Agr17, Glu28, Gly39, Ala40, Trp76, and Trp81) was done, and a total of 114 in silico mutants of RSL were docked with Me-α-L-fucoside. Our results show that polar residues Arg17 and Glu28, as well as nonpolar amino acids Trp76 and Trp81, are crucial for binding. Gly39 may also influence ligand binding because any mutations at this position lead to a change in the binding pocket shape. The Ala40 residue was found to be the most interesting residue for mutagenesis and can affect the selectivity and/or affinity. In general, the docking software used performs better for high affinity binders and fails to place the binding affinities in the correct order.
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a sacharidové sekvence $7 D002240
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a krystalografie rentgenová $7 D018360
- 650 _2
- $a lektiny $x chemie $x genetika $x metabolismus $7 D037102
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a mutageneze $7 D016296
- 650 _2
- $a Ralstonia solanacearum $x chemie $x genetika $x metabolismus $7 D043368
- 650 _2
- $a receptory buněčného povrchu $x chemie $7 D011956
- 650 _2
- $a software $7 D012984
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Adam, Jan $7 xx0116781 $u Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- 700 1_
- $a Wimmerová, Michaela $7 ola2004235533 $u Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- 700 1_
- $a Koča, Jaroslav, $d 1955-2021 $7 jn20000710314 $u Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- 773 0_
- $w MED00008945 $t Journal of chemical information and modeling $x 1549-960X $g Roč. 52, č. 5 (2012), s. 1250-1261
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22506916 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20121023 $b ABA008
- 991 __
- $a 20160902161739 $b ABA008
- 999 __
- $a ok $b bmc $g 956583 $s 792070
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 52 $c 5 $d 1250-1261 $i 1549-960X $m Journal of chemical information and modeling $n J Chem Inf Model $x MED00008945
- LZP __
- $b NLK122 $a Pubmed-20121023