-
Je něco špatně v tomto záznamu ?
Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones
P. Landa, Z. Kutil, V. Temml, A. Vuorinen, J. Malik, M. Dvorakova, P. Marsik, L. Kokoska, M. Pribylova, D. Schuster, T. Vanek,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22174077
DOI
10.1055/s-0031-1280430
Knihovny.cz E-zdroje
- MeSH
- antiflogistika farmakologie MeSH
- chinony chemie farmakologie MeSH
- cyklooxygenasa 1 chemie metabolismus MeSH
- cyklooxygenasa 2 chemie metabolismus MeSH
- inhibitory cyklooxygenasy chemie farmakologie MeSH
- lidé MeSH
- molekulární modely MeSH
- myši MeSH
- ovce MeSH
- oxidace-redukce MeSH
- rostlinné extrakty farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zánět farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this study, ten anthra-, nine naphtho-, and five benzoquinone compounds of natural origin and five synthetic naphthoquinones were assessed, using an enzymatic in vitro assay, for their potential to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2), the key enzymes of the arachidonic acid cascade. IC₅₀ values comparable with COX reference inhibitor indomethacin were recorded for several quinones (primin, alkannin, diospyrin, juglone, 7-methyljuglone, and shikonin). For some of the compounds, we suggest the redox potential of quinones as the mechanism responsible for in vitro COX inhibition because of the quantitative correlation with their pro-oxidant effect. Structure-relationship activity studies revealed that the substitutions at positions 2 and 5 play the key roles in the COX inhibitory and pro-oxidant actions of naphthoquinones. In contrast, the redox mechanism alone could not explain the activity of primin, embelin, alkannin, and diospyrin. For these four quinones, molecular modeling suggested similar binding modes as for conventional nonsteroidal anti-inflammatory drugs (NSAIDs).
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12034829
- 003
- CZ-PrNML
- 005
- 20121210104824.0
- 007
- ta
- 008
- 121023s2012 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1055/s-0031-1280430 $2 doi
- 035 __
- $a (PubMed)22174077
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Landa, Premysl $u Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, Prague 6-Lysolaje, Czech Republic. landa@ueb.cas.cz
- 245 10
- $a Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones / $c P. Landa, Z. Kutil, V. Temml, A. Vuorinen, J. Malik, M. Dvorakova, P. Marsik, L. Kokoska, M. Pribylova, D. Schuster, T. Vanek,
- 520 9_
- $a In this study, ten anthra-, nine naphtho-, and five benzoquinone compounds of natural origin and five synthetic naphthoquinones were assessed, using an enzymatic in vitro assay, for their potential to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2), the key enzymes of the arachidonic acid cascade. IC₅₀ values comparable with COX reference inhibitor indomethacin were recorded for several quinones (primin, alkannin, diospyrin, juglone, 7-methyljuglone, and shikonin). For some of the compounds, we suggest the redox potential of quinones as the mechanism responsible for in vitro COX inhibition because of the quantitative correlation with their pro-oxidant effect. Structure-relationship activity studies revealed that the substitutions at positions 2 and 5 play the key roles in the COX inhibitory and pro-oxidant actions of naphthoquinones. In contrast, the redox mechanism alone could not explain the activity of primin, embelin, alkannin, and diospyrin. For these four quinones, molecular modeling suggested similar binding modes as for conventional nonsteroidal anti-inflammatory drugs (NSAIDs).
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a antiflogistika $x farmakologie $7 D000893
- 650 _2
- $a cyklooxygenasa 1 $x chemie $x metabolismus $7 D051545
- 650 _2
- $a cyklooxygenasa 2 $x chemie $x metabolismus $7 D051546
- 650 _2
- $a inhibitory cyklooxygenasy $x chemie $x farmakologie $7 D016861
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a zánět $x farmakoterapie $7 D007249
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a rostlinné extrakty $x farmakologie $7 D010936
- 650 _2
- $a chinony $x chemie $x farmakologie $7 D011809
- 650 _2
- $a ovce $7 D012756
- 650 _2
- $a vztahy mezi strukturou a aktivitou $7 D013329
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kutil, Zsofia
- 700 1_
- $a Temml, Veronika
- 700 1_
- $a Vuorinen, Anna
- 700 1_
- $a Malik, Jan
- 700 1_
- $a Dvorakova, Marcela
- 700 1_
- $a Marsik, Petr
- 700 1_
- $a Kokoska, Ladislav
- 700 1_
- $a Pribylova, Marie
- 700 1_
- $a Schuster, Daniela
- 700 1_
- $a Vanek, Tomas
- 773 0_
- $w MED00003839 $t Planta medica $x 1439-0221 $g Roč. 78, č. 4 (2012), s. 326-33
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22174077 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a
- 990 __
- $a 20121023 $b ABA008
- 991 __
- $a 20121210104901 $b ABA008
- 999 __
- $a ok $b bmc $g 956839 $s 792326
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 78 $c 4 $d 326-33 $i 1439-0221 $m Planta medica $n Planta Med $x MED00003839
- LZP __
- $a Pubmed-20121023