• Something wrong with this record ?

Robust multichannel blind deconvolution via fast alternating minimization

F. Sroubek, P. Milanfar,

. 2012 ; 21 (4) : 1687-700.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Blind deconvolution, which comprises simultaneous blur and image estimations, is a strongly ill-posed problem. It is by now well known that if multiple images of the same scene are acquired, this multichannel (MC) blind deconvolution problem is better posed and allows blur estimation directly from the degraded images. We improve the MC idea by adding robustness to noise and stability in the case of large blurs or if the blur size is vastly overestimated. We formulate blind deconvolution as an l(1) -regularized optimization problem and seek a solution by alternately optimizing with respect to the image and with respect to blurs. Each optimization step is converted to a constrained problem by variable splitting and then is addressed with an augmented Lagrangian method, which permits simple and fast implementation in the Fourier domain. The rapid convergence of the proposed method is illustrated on synthetically blurred data. Applicability is also demonstrated on the deconvolution of real photos taken by a digital camera.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12034861
003      
CZ-PrNML
005      
20121207105033.0
007      
ta
008      
121023s2012 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1109/tip.2011.2175740 $2 doi
035    __
$a (PubMed)22084050
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sroubek, Filip $u Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague, Czech Republic. sroubekf@utia.cz
245    10
$a Robust multichannel blind deconvolution via fast alternating minimization / $c F. Sroubek, P. Milanfar,
520    9_
$a Blind deconvolution, which comprises simultaneous blur and image estimations, is a strongly ill-posed problem. It is by now well known that if multiple images of the same scene are acquired, this multichannel (MC) blind deconvolution problem is better posed and allows blur estimation directly from the degraded images. We improve the MC idea by adding robustness to noise and stability in the case of large blurs or if the blur size is vastly overestimated. We formulate blind deconvolution as an l(1) -regularized optimization problem and seek a solution by alternately optimizing with respect to the image and with respect to blurs. Each optimization step is converted to a constrained problem by variable splitting and then is addressed with an augmented Lagrangian method, which permits simple and fast implementation in the Fourier domain. The rapid convergence of the proposed method is illustrated on synthetically blurred data. Applicability is also demonstrated on the deconvolution of real photos taken by a digital camera.
650    _2
$a algoritmy $7 D000465
650    _2
$a artefakty $7 D016477
650    _2
$a vylepšení obrazu $x metody $7 D007089
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senzitivita a specificita $7 D012680
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Milanfar, Peyman
773    0_
$w MED00002173 $t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society $x 1941-0042 $g Roč. 21, č. 4 (2012), s. 1687-700
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22084050 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a
990    __
$a 20121023 $b ABA008
991    __
$a 20121207105107 $b ABA008
999    __
$a ok $b bmc $g 956871 $s 792358
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 21 $c 4 $d 1687-700 $i 1941-0042 $m IEEE transactions on image processing $n IEEE trans. image process $x MED00002173
LZP    __
$a Pubmed-20121023

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...