-
Je něco špatně v tomto záznamu ?
Microscale separation methods for enzyme kinetics assays
T. Křížek, A. Kubíčková,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
NLK
ProQuest Central
od 2011-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2003-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2011-01-01 do Před 1 rokem
- MeSH
- chromatografie micelární elektrokinetická kapilární metody MeSH
- elektroforéza kapilární metody MeSH
- enzymatické testy metody MeSH
- isoelektrická fokusace metody MeSH
- izotachoforéza metody MeSH
- kapilární elektrochromatografie metody MeSH
- kinetika MeSH
- lidé MeSH
- miniaturizace metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Miniaturization continues to be one of the leading trends in analytical chemistry and one that brings advantages that can be particularly beneficial in biochemical research. Use of a miniaturized scale enables efficient analysis in a short time and requires very small amounts of samples, solvents, and reagents. This can result in a remarkable decrease in costs of enzyme kinetics studies, especially when expensive or rare enzymes and/or substrates are involved. Free zone electrophoresis is without a doubt the most common microscale separation technique for capillary and on-chip enzyme assays. Progress and applications in this field are reviewed frequently whereas other modes of separation, although successfully applied, receive only marginal interest in such publications. This review summarizes applications of less common modes of separation in capillary or chip formats, namely micellar electrokinetic chromatography, liquid chromatography, gel electrophoresis, isoelectric focusing, and isotachophoresis. Because these techniques are based on separation mechanisms different from those of free zone electrophoresis, they can be, and have been, successfully used in cases where zone electrophoresis fails. Advantages and drawbacks of these alternative separation techniques are discussed, as also are the difficulties encountered most often and solutions proposed by different research groups.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13000960
- 003
- CZ-PrNML
- 005
- 20130108124511.0
- 007
- ta
- 008
- 130108s2012 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00216-012-5744-x $2 doi
- 035 __
- $a (PubMed)22302169
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Křížek, Tomáš $u Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Prague, Czech Republic.
- 245 10
- $a Microscale separation methods for enzyme kinetics assays / $c T. Křížek, A. Kubíčková,
- 520 9_
- $a Miniaturization continues to be one of the leading trends in analytical chemistry and one that brings advantages that can be particularly beneficial in biochemical research. Use of a miniaturized scale enables efficient analysis in a short time and requires very small amounts of samples, solvents, and reagents. This can result in a remarkable decrease in costs of enzyme kinetics studies, especially when expensive or rare enzymes and/or substrates are involved. Free zone electrophoresis is without a doubt the most common microscale separation technique for capillary and on-chip enzyme assays. Progress and applications in this field are reviewed frequently whereas other modes of separation, although successfully applied, receive only marginal interest in such publications. This review summarizes applications of less common modes of separation in capillary or chip formats, namely micellar electrokinetic chromatography, liquid chromatography, gel electrophoresis, isoelectric focusing, and isotachophoresis. Because these techniques are based on separation mechanisms different from those of free zone electrophoresis, they can be, and have been, successfully used in cases where zone electrophoresis fails. Advantages and drawbacks of these alternative separation techniques are discussed, as also are the difficulties encountered most often and solutions proposed by different research groups.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a kapilární elektrochromatografie $x metody $7 D053801
- 650 _2
- $a chromatografie micelární elektrokinetická kapilární $x metody $7 D020374
- 650 _2
- $a elektroforéza kapilární $x metody $7 D019075
- 650 _2
- $a enzymatické testy $x metody $7 D057075
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a isoelektrická fokusace $x metody $7 D007525
- 650 _2
- $a izotachoforéza $x metody $7 D057625
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a miniaturizace $x metody $7 D008904
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Kubíčková, Anna
- 773 0_
- $w MED00006638 $t Analytical and bioanalytical chemistry $x 1618-2650 $g Roč. 403, č. 8 (2012), s. 2185-95
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22302169 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130108 $b ABA008
- 991 __
- $a 20130108124615 $b ABA008
- 999 __
- $a ok $b bmc $g 963742 $s 799124
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 403 $c 8 $d 2185-95 $i 1618-2650 $m Analytical and bioanalytical chemistry $n Anal Bioanal Chem $x MED00006638
- LZP __
- $a Pubmed-20130108