• Je něco špatně v tomto záznamu ?

Monitoring of the prostate tumour cells redox state and real-time proliferation by novel biophysical techniques and fluorescent staining

M. Masarik, J. Gumulec, M. Hlavna, M. Sztalmachova, P. Babula, M. Raudenska, M. Pavkova-Goldbergova, N. Cernei, J. Sochor, O. Zitka, B. Ruttkay-Nedecky, S. Krizkova, V. Adam, R. Kizek,

. 2012 ; 4 (6) : 672-84.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13012676

The present paper is focused on zinc(ii) treatment effects on prostatic cell lines PC-3 (tumour) and PNT1A (non-tumour). Oxidative status of cells was monitored by evaluation of expression of metallothionein (MT) isoforms 1A and 2A at the mRNA and protein level, glutathione (oxidised and reduced), and intracellular zinc(ii) after exposition to zinc(ii) treatment at concentrations of 0-150 μM using electrochemical methods, western blotting and fluorescent microscopy. A novel real-time impedance-based growth monitoring system was compared with widely used end-point MTT assay. Impedance-based IC(50) for zinc(ii) is 55.5 and 150.8 μM for PC-3 and PNT1A, respectively. MTT-determined IC(50) are >1.3-fold higher. Impedance-based viability correlates with viable count (r > 0.92; p < 0.03), not with MTT. Two-fold lower intracellular zinc(ii) in the tumour PC-3 cell line was found. After zinc(ii) treatment >2.6-fold increase of intracellular zinc(ii) was observed in non-tumour PNT1A and in tumour PC-3 cells. In PC-3 cells, free and bound zinc(ii) levels were enhanced more markedly as compared to PNT1A. PNT1A produced 4.2-fold less MT compared to PC3. PNT1A cells showed a 4.8-fold increase trend (r = 0.94; p = 0.005); PC-3 did show a significant trend at MT1 and MT2 protein levels (r = 0.93; p = 0.02) with nearly ten-fold increase after 100 μM zinc(ii) treatment. In terms of redox state, PNT1A had a predominance of reduced GSH forms (GSH : GSSG ratio > 1), when exposed to zinc(ii) compared to PC3, where predominance of oxidised forms remains at all concentrations. IC(50) differs significantly when determined by MTT and real-time impedance-based assays due to dependence of impedance on cell morphology and adhesion. When real-time growth monitoring, precise electrochemical methods and fluorescent microscopy are performed together, accurate information for metal fluxes, their buffering by thiol compounds and monitoring of the redox state become a powerful tool for understanding the role of oxidative stress in carcinogenesis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13012676
003      
CZ-PrNML
005      
20130611102259.0
007      
ta
008      
130404s2012 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1039/c2ib00157h $2 doi
035    __
$a (PubMed)22592803
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Masařík, Michal $7 xx0104244 $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. masarik@med.muni.cz
245    10
$a Monitoring of the prostate tumour cells redox state and real-time proliferation by novel biophysical techniques and fluorescent staining / $c M. Masarik, J. Gumulec, M. Hlavna, M. Sztalmachova, P. Babula, M. Raudenska, M. Pavkova-Goldbergova, N. Cernei, J. Sochor, O. Zitka, B. Ruttkay-Nedecky, S. Krizkova, V. Adam, R. Kizek,
520    9_
$a The present paper is focused on zinc(ii) treatment effects on prostatic cell lines PC-3 (tumour) and PNT1A (non-tumour). Oxidative status of cells was monitored by evaluation of expression of metallothionein (MT) isoforms 1A and 2A at the mRNA and protein level, glutathione (oxidised and reduced), and intracellular zinc(ii) after exposition to zinc(ii) treatment at concentrations of 0-150 μM using electrochemical methods, western blotting and fluorescent microscopy. A novel real-time impedance-based growth monitoring system was compared with widely used end-point MTT assay. Impedance-based IC(50) for zinc(ii) is 55.5 and 150.8 μM for PC-3 and PNT1A, respectively. MTT-determined IC(50) are >1.3-fold higher. Impedance-based viability correlates with viable count (r > 0.92; p < 0.03), not with MTT. Two-fold lower intracellular zinc(ii) in the tumour PC-3 cell line was found. After zinc(ii) treatment >2.6-fold increase of intracellular zinc(ii) was observed in non-tumour PNT1A and in tumour PC-3 cells. In PC-3 cells, free and bound zinc(ii) levels were enhanced more markedly as compared to PNT1A. PNT1A produced 4.2-fold less MT compared to PC3. PNT1A cells showed a 4.8-fold increase trend (r = 0.94; p = 0.005); PC-3 did show a significant trend at MT1 and MT2 protein levels (r = 0.93; p = 0.02) with nearly ten-fold increase after 100 μM zinc(ii) treatment. In terms of redox state, PNT1A had a predominance of reduced GSH forms (GSH : GSSG ratio > 1), when exposed to zinc(ii) compared to PC3, where predominance of oxidised forms remains at all concentrations. IC(50) differs significantly when determined by MTT and real-time impedance-based assays due to dependence of impedance on cell morphology and adhesion. When real-time growth monitoring, precise electrochemical methods and fluorescent microscopy are performed together, accurate information for metal fluxes, their buffering by thiol compounds and monitoring of the redox state become a powerful tool for understanding the role of oxidative stress in carcinogenesis.
650    _2
$a western blotting $7 D015153
650    _2
$a buňky - růstové procesy $x účinky léků $7 D048708
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a viabilita buněk $x fyziologie $7 D002470
650    _2
$a impedanční spektroskopie $7 D058266
650    _2
$a fluorescenční barviva $x chemie $7 D005456
650    _2
$a formazany $x chemie $7 D005562
650    _2
$a glutathion $x metabolismus $7 D005978
650    _2
$a lidé $7 D006801
650    _2
$a lineární modely $7 D016014
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a metalothionein $x genetika $x metabolismus $7 D008668
650    _2
$a fluorescenční mikroskopie $x metody $7 D008856
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a nádory prostaty $x farmakoterapie $x metabolismus $x patologie $7 D011471
650    _2
$a RNA $x chemie $x genetika $7 D012313
650    _2
$a polymerázová řetězová reakce s reverzní transkripcí $7 D020133
650    _2
$a tetrazoliové soli $x chemie $7 D013778
650    _2
$a síran zinečnatý $x farmakologie $7 D019287
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Gumulec, Jaromír, $d 1963- $7 xx0054104
700    1#
$a Hlavna, Marian. $7 _AN049680
700    1_
$a Sztalmachová, Markéta $7 xx0146032
700    1_
$a Babula, Petr
700    1#
$a Raudenská, Martina, $d 1980- $7 hka2015854485
700    1_
$a Pávková Goldbergová, Monika $7 xx0054290
700    1#
$a Cernei, Natalia. $7 _AN063287
700    1#
$a Sochor, J. $7 _AN063450
700    1_
$a Zítka, Ondřej $7 xx0116134
700    1#
$a Ruttkay-Nedecký, Branislav. $7 xx0237909
700    1_
$a Křížková, Soňa, $d 1981- $7 xx0105812
700    1_
$a Adam, Vojtěch, $d 1982- $7 xx0064599
700    1_
$a Kizek, René, $d 1972- $7 jn20001005291
773    0_
$w MED00181432 $t Integrative biology : quantitative biosciences from nano to macro $x 1757-9708 $g Roč. 4, č. 6 (2012), s. 672-84
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22592803 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130404 $b ABA008
991    __
$a 20130611102641 $b ABA008
999    __
$a ok $b bmc $g 975874 $s 810957
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 4 $c 6 $d 672-84 $i 1757-9708 $m Integrative biology $n Integr Biol (Camb) $x MED00181432
LZP    __
$a Pubmed-20130404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...