Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae

J. Stříbný, O. Kinclová-Zimmermannová, H. Sychrová,

. 2012 ; 58 (5-6) : 255-64.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13024322
E-zdroje Online Plný text

NLK ProQuest Central od 2003-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2000-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2003-01-01 do Před 1 rokem

Three different transport systems exist to accumulate a sufficient amount of potassium cations in yeasts. The most common of these are Trk-type transporters, which are used by all yeast species. Though most yeast species employ two different types of transporters, we only identified one gene encoding a potassium uptake system (Trk-type) in the genome of the highly osmotolerant yeast Zygosaccharomyces rouxii, and our results showed that ZrTrk1 is its major (and probably only) specific potassium uptake system. When expressed in Saccharomyces cerevisiae, the product of the ZrTRK1 gene is localized to the plasma membrane and its presence efficiently complements the phenotypes of S. cerevisiae trk1∆ trk2∆ cells. Deletion of the ZrTRK1 gene resulted in Z. rouxii cells being almost incapable of growth at low K(+) concentrations and it changed some cell physiological parameters in a way that differs from S. cerevisiae. In contrast to S. cerevisiae, Z. rouxii cells without the TRK1 gene contained less potassium than the control cells and their plasma membrane was significantly hyperpolarized compared with those of the parental strain when grown in the presence of 100 mM KCl. On the other hand, subsequent potassium starvation led to a substantial depolarization which is again different from S. cerevisiae. Plasma-membrane hyperpolarization did not prevent the efflux of potassium from Z. rouxii trk1Δ cells during potassium starvation, and the activity of ZrPma1 is less affected by the absence of ZrTRK1 than in S. cerevisiae. The use of a newly constructed Z. rouxii-specific plasmid for the expression of pHluorin showed that the intracellular pH of the Z. rouxii wild type and the trk1∆ mutant is not significantly different. Together with the fact that Z. rouxii cells contain a significantly lower amount of intracellular potassium than identically grown S. cerevisiae cells, our results suggest that this highly osmotolerant yeast species maintain its intracellular pH and potassium homeostasis in way(s) partially distinct from S. cerevisiae.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13024322
003      
CZ-PrNML
005      
20130708101614.0
007      
ta
008      
130703s2012 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00294-012-0381-7 $2 doi
035    __
$a (PubMed)22948499
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Stříbný, Jiří $u Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic.
245    10
$a Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae / $c J. Stříbný, O. Kinclová-Zimmermannová, H. Sychrová,
520    9_
$a Three different transport systems exist to accumulate a sufficient amount of potassium cations in yeasts. The most common of these are Trk-type transporters, which are used by all yeast species. Though most yeast species employ two different types of transporters, we only identified one gene encoding a potassium uptake system (Trk-type) in the genome of the highly osmotolerant yeast Zygosaccharomyces rouxii, and our results showed that ZrTrk1 is its major (and probably only) specific potassium uptake system. When expressed in Saccharomyces cerevisiae, the product of the ZrTRK1 gene is localized to the plasma membrane and its presence efficiently complements the phenotypes of S. cerevisiae trk1∆ trk2∆ cells. Deletion of the ZrTRK1 gene resulted in Z. rouxii cells being almost incapable of growth at low K(+) concentrations and it changed some cell physiological parameters in a way that differs from S. cerevisiae. In contrast to S. cerevisiae, Z. rouxii cells without the TRK1 gene contained less potassium than the control cells and their plasma membrane was significantly hyperpolarized compared with those of the parental strain when grown in the presence of 100 mM KCl. On the other hand, subsequent potassium starvation led to a substantial depolarization which is again different from S. cerevisiae. Plasma-membrane hyperpolarization did not prevent the efflux of potassium from Z. rouxii trk1Δ cells during potassium starvation, and the activity of ZrPma1 is less affected by the absence of ZrTRK1 than in S. cerevisiae. The use of a newly constructed Z. rouxii-specific plasmid for the expression of pHluorin showed that the intracellular pH of the Z. rouxii wild type and the trk1∆ mutant is not significantly different. Together with the fact that Z. rouxii cells contain a significantly lower amount of intracellular potassium than identically grown S. cerevisiae cells, our results suggest that this highly osmotolerant yeast species maintain its intracellular pH and potassium homeostasis in way(s) partially distinct from S. cerevisiae.
650    _2
$a biologická adaptace $7 D000220
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a biologický transport $7 D001692
650    _2
$a proteiny přenášející kationty $x genetika $x metabolismus $7 D027682
650    _2
$a buněčná membrána $x fyziologie $7 D002462
650    _2
$a DNA fungální $x genetika $x metabolismus $7 D004271
650    _2
$a delece genu $7 D017353
650    12
$a regulace genové exprese u hub $7 D015966
650    12
$a geny hub $7 D005800
650    _2
$a homeostáza $7 D006706
650    _2
$a homologní rekombinace $7 D059765
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a membránové potenciály $7 D008564
650    _2
$a draslík $x metabolismus $7 D011188
650    _2
$a Saccharomyces cerevisiae $x genetika $x fyziologie $7 D012441
650    _2
$a Saccharomyces cerevisiae - proteiny $x genetika $x metabolismus $7 D029701
650    _2
$a sekvenční seřazení $7 D016415
650    _2
$a sekvenční homologie $7 D017385
650    _2
$a Zygosaccharomyces $x genetika $x fyziologie $7 D020068
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kinclová-Zimmermannová, Olga $u -
700    1_
$a Sychrová, Hana $u -
773    0_
$w MED00001271 $t Current genetics $x 1432-0983 $g Roč. 58, č. 5-6 (2012), s. 255-64
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22948499 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130703 $b ABA008
991    __
$a 20130708102036 $b ABA008
999    __
$a ok $b bmc $g 988002 $s 822702
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 58 $c 5-6 $d 255-64 $i 1432-0983 $m Current genetics $n Curr Genet $x MED00001271
LZP    __
$a Pubmed-20130703

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...