Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection

M. Stěrba, O. Popelová, A. Vávrová, E. Jirkovský, P. Kovaříková, V. Geršl, T. Simůnek,

. 2013 ; 18 (8) : 899-929.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc13031899

Grantová podpora
NT13457 MZ0 CEP - Centrální evidence projektů

SIGNIFICANCE: Anthracyclines (doxorubicin, daunorubicin, or epirubicin) rank among the most effective anticancer drugs, but their clinical usefulness is hampered by the risk of cardiotoxicity. The most feared are the chronic forms of cardiotoxicity, characterized by irreversible cardiac damage and congestive heart failure. Although the pathogenesis of anthracycline cardiotoxicity seems to be complex, the pivotal role has been traditionally attributed to the iron-mediated formation of reactive oxygen species (ROS). In clinics, the bisdioxopiperazine agent dexrazoxane (ICRF-187) reduces the risk of anthracycline cardiotoxicity without a significant effect on response to chemotherapy. The prevailing concept describes dexrazoxane as a prodrug undergoing bioactivation to an iron-chelating agent ADR-925, which may inhibit anthracycline-induced ROS formation and oxidative damage to cardiomyocytes. RECENT ADVANCES: A considerable body of evidence points to mitochondria as the key targets for anthracycline cardiotoxicity, and therefore it could be also crucial for effective cardioprotection. Numerous antioxidants and several iron chelators have been tested in vitro and in vivo with variable outcomes. None of these compounds have matched or even surpassed the effectiveness of dexrazoxane in chronic anthracycline cardiotoxicity settings, despite being stronger chelators and/or antioxidants. CRITICAL ISSUES: The interpretation of many findings is complicated by the heterogeneity of experimental models and frequent employment of acute high-dose treatments with limited translatability to clinical practice. FUTURE DIRECTIONS: Dexrazoxane may be the key to the enigma of anthracycline cardiotoxicity, and therefore it warrants further investigation, including the search for alternative/complementary modes of cardioprotective action beyond simple iron chelation.

000      
00000naa a2200000 a 4500
001      
bmc13031899
003      
CZ-PrNML
005      
20181207131404.0
007      
ta
008      
131002s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1089/ars.2012.4795 $2 doi
035    __
$a (PubMed)22794198
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Štěrba, Martin $u Department of Pharmacology, Charles University in Prague, Hradec Králové, Czech Republic. sterbam@lfhk.cuni.cz $7 xx0076492
245    10
$a Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection / $c M. Stěrba, O. Popelová, A. Vávrová, E. Jirkovský, P. Kovaříková, V. Geršl, T. Simůnek,
520    9_
$a SIGNIFICANCE: Anthracyclines (doxorubicin, daunorubicin, or epirubicin) rank among the most effective anticancer drugs, but their clinical usefulness is hampered by the risk of cardiotoxicity. The most feared are the chronic forms of cardiotoxicity, characterized by irreversible cardiac damage and congestive heart failure. Although the pathogenesis of anthracycline cardiotoxicity seems to be complex, the pivotal role has been traditionally attributed to the iron-mediated formation of reactive oxygen species (ROS). In clinics, the bisdioxopiperazine agent dexrazoxane (ICRF-187) reduces the risk of anthracycline cardiotoxicity without a significant effect on response to chemotherapy. The prevailing concept describes dexrazoxane as a prodrug undergoing bioactivation to an iron-chelating agent ADR-925, which may inhibit anthracycline-induced ROS formation and oxidative damage to cardiomyocytes. RECENT ADVANCES: A considerable body of evidence points to mitochondria as the key targets for anthracycline cardiotoxicity, and therefore it could be also crucial for effective cardioprotection. Numerous antioxidants and several iron chelators have been tested in vitro and in vivo with variable outcomes. None of these compounds have matched or even surpassed the effectiveness of dexrazoxane in chronic anthracycline cardiotoxicity settings, despite being stronger chelators and/or antioxidants. CRITICAL ISSUES: The interpretation of many findings is complicated by the heterogeneity of experimental models and frequent employment of acute high-dose treatments with limited translatability to clinical practice. FUTURE DIRECTIONS: Dexrazoxane may be the key to the enigma of anthracycline cardiotoxicity, and therefore it warrants further investigation, including the search for alternative/complementary modes of cardioprotective action beyond simple iron chelation.
650    _2
$a antracykliny $x škodlivé účinky $x chemie $x farmakologie $7 D018943
650    _2
$a antitumorózní látky $x škodlivé účinky $x chemie $x farmakologie $7 D000970
650    _2
$a antioxidancia $x chemie $x farmakologie $7 D000975
650    _2
$a kardiotonika $x škodlivé účinky $x chemie $x farmakologie $7 D002316
650    _2
$a chelátory $x škodlivé účinky $x chemie $x farmakologie $7 D002614
650    _2
$a srdce $x účinky léků $7 D006321
650    _2
$a lidé $7 D006801
650    _2
$a kovy $x škodlivé účinky $7 D008670
650    _2
$a myokard $x metabolismus $7 D009206
650    _2
$a oxidace-redukce $7 D010084
650    12
$a oxidační stres $7 D018384
650    _2
$a razoxan $x škodlivé účinky $x chemie $x farmakologie $7 D011929
650    _2
$a reaktivní formy kyslíku $x metabolismus $7 D017382
650    12
$a signální transdukce $7 D015398
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Lenčová-Popelová, Olga $u - $7 _BN001885
700    1_
$a Vávrová, Anna $u - $7 _AN050099
700    1_
$a Jirkovský, Eduard $u - $7 uk20201094982
700    1_
$a Štěrbová-Kovaříková, Petra $u - $7 mzk2007411146
700    1_
$a Geršl, Vladimír, $u - $d 1946-2015 $7 nlk19990073168
700    1_
$a Šimůnek, Tomáš $u - $7 xx0019029
773    0_
$w MED00006026 $t Antioxidants & redox signaling $x 1557-7716 $g Roč. 18, č. 8 (2013), s. 899-929
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22794198 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20131002 $b ABA008
991    __
$a 20181207131522 $b ABA008
999    __
$a ok $b bmc $g 995986 $s 830344
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 18 $c 8 $d 899-929 $i 1557-7716 $m Antioxidants & redox signaling $n Antioxid. Redox Signal. $x MED00006026
GRA    __
$a NT13457 $p MZ0
LZP    __
$a Pubmed-20131002

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...