-
Je něco špatně v tomto záznamu ?
Real encoded genetic algorithm and response surface methodology to optimize production of an indolizidine alkaloid, swainsonine, from Metarhizium anisopliae
D. Singh, G. Kaur,
Jazyk angličtina Země Česko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- alkaloidy izolace a purifikace metabolismus MeSH
- biotechnologie metody MeSH
- fermentace MeSH
- kultivační média chemie MeSH
- Metarhizium genetika metabolismus MeSH
- neuronové sítě MeSH
- počet mikrobiálních kolonií MeSH
- swainsonin izolace a purifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Response surface methodology (RSM) and artificial neural network-real encoded genetic algorithm (ANN-REGA) were employed to develop a process for fermentative swainsonine production from Metarhizium anisopliae (ARSEF 1724). The effect of finally screened process variables viz. inoculum size, oatmeal extract, glucose, and CaCl2 were investigated through central composite design and were further utilized for training sets in ANN with training and test R values of 0.99 and 0.94, respectively. ANN-REGA was finally employed to simulate the predictive swainsonine production with best evolved media composition. ANN-REGA predicted a more precise fermentation model with 103 % (shake flask) increase in alkaloid production compared to 75.62 % (shake flask) obtained with RSM model upon validation.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14049961
- 003
- CZ-PrNML
- 005
- 20140415095548.0
- 007
- ta
- 008
- 140324s2013 xr f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s12223-012-0220-8 $2 doi
- 035 __
- $a (PubMed)23315485
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Singh, Digar
- 245 10
- $a Real encoded genetic algorithm and response surface methodology to optimize production of an indolizidine alkaloid, swainsonine, from Metarhizium anisopliae / $c D. Singh, G. Kaur,
- 520 9_
- $a Response surface methodology (RSM) and artificial neural network-real encoded genetic algorithm (ANN-REGA) were employed to develop a process for fermentative swainsonine production from Metarhizium anisopliae (ARSEF 1724). The effect of finally screened process variables viz. inoculum size, oatmeal extract, glucose, and CaCl2 were investigated through central composite design and were further utilized for training sets in ANN with training and test R values of 0.99 and 0.94, respectively. ANN-REGA was finally employed to simulate the predictive swainsonine production with best evolved media composition. ANN-REGA predicted a more precise fermentation model with 103 % (shake flask) increase in alkaloid production compared to 75.62 % (shake flask) obtained with RSM model upon validation.
- 650 _2
- $a alkaloidy $x izolace a purifikace $x metabolismus $7 D000470
- 650 _2
- $a biotechnologie $x metody $7 D001709
- 650 _2
- $a počet mikrobiálních kolonií $7 D015169
- 650 _2
- $a kultivační média $x chemie $7 D003470
- 650 _2
- $a fermentace $7 D005285
- 650 _2
- $a Metarhizium $x genetika $x metabolismus $7 D052981
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a swainsonin $x izolace a purifikace $x metabolismus $7 D017026
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kaur, Gurvinder $u -
- 773 0_
- $w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 58, č. 5 (2013), s. 393-401
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23315485 $y Pubmed
- 910 __
- $a ABA008 $b online $c sign $y a $z 0
- 990 __
- $a 20140324 $b ABA008
- 991 __
- $a 20140415095646 $b ABA008
- 999 __
- $a ok $b bmc $g 1019664 $s 848531
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 58 $c 5 $d 393-401 $i 1874-9356 $m Folia microbiologica $n Folia microbiol. (Prague) $x MED00011005
- LZP __
- $a Pubmed-20140324