Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Does the dose-solubility ratio affect the mean dissolution time of drugs?

Petr Lánský, Michael Weiss

. 1999 ; 16 (9) : 1470-1476.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc14060188

Grantová podpora
IZ4034 MZ0 CEP - Centrální evidence projektů

Digitální knihovna NLK
Plný text - Část
Zdroj

E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest) od 1997-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem

PURPOSE: To present a new model for describing drug dissolution. On the basis of the new model to characterize the dissolution profile by the distribution function of the random dissolution time of a drug molecule, which generalizes the classical first order model. METHODS: Instead of assuming a constant fractional dissolution rate, as in the classical model, it is considered that the fractional dissolution rate is a decreasing function of the dissolved amount controlled by the dose-solubility ratio. The differential equation derived from this assumption is solved and the distribution measures (half-dissolution time, mean dissolution time, relative dispersion of the dissolution time, dissolution time density, and fractional dissolution rate) are calculated. Finally, instead of monotonically decreasing the fractional dissolution rate, a generalization resulting in zero dissolution rate at time origin is introduced. RESULTS: The behavior of the model is divided into two regions defined by q, the ratio of the dose to the solubility level: q < 1 (complete dissolution of the dose, dissolution time) and q > 1 (saturation of the solution, saturation time). The singular case q = 1 is also treated and in this situation the mean as well as the relative dispersion of the dissolution time increase to infinity. The model was successfully fitted to data (1). CONCLUSIONS: This empirical model is descriptive without detailed physical reasoning behind its derivation. According to the model, the mean dissolution time is affected by the dose-solubility ratio. Although this prediction appears to be in accordance with preliminary application, further validation based on more suitable experimental data is required.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14060188
003      
CZ-PrNML
005      
20190104110933.0
007      
ta
008      
140602s1999 xxud f 000 0|eng||
009      
AR
024    7_
$a 10.1023/a:1018923714107 $2 doi
035    __
$a (PubMed)10496667
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xxu
100    1_
$a Lánský, Petr $7 xx0062306 $u Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska, Prague. lansky@biomed.cas.cz
245    10
$a Does the dose-solubility ratio affect the mean dissolution time of drugs? / $c Petr Lánský, Michael Weiss
520    9_
$a PURPOSE: To present a new model for describing drug dissolution. On the basis of the new model to characterize the dissolution profile by the distribution function of the random dissolution time of a drug molecule, which generalizes the classical first order model. METHODS: Instead of assuming a constant fractional dissolution rate, as in the classical model, it is considered that the fractional dissolution rate is a decreasing function of the dissolved amount controlled by the dose-solubility ratio. The differential equation derived from this assumption is solved and the distribution measures (half-dissolution time, mean dissolution time, relative dispersion of the dissolution time, dissolution time density, and fractional dissolution rate) are calculated. Finally, instead of monotonically decreasing the fractional dissolution rate, a generalization resulting in zero dissolution rate at time origin is introduced. RESULTS: The behavior of the model is divided into two regions defined by q, the ratio of the dose to the solubility level: q < 1 (complete dissolution of the dose, dissolution time) and q > 1 (saturation of the solution, saturation time). The singular case q = 1 is also treated and in this situation the mean as well as the relative dispersion of the dissolution time increase to infinity. The model was successfully fitted to data (1). CONCLUSIONS: This empirical model is descriptive without detailed physical reasoning behind its derivation. According to the model, the mean dissolution time is affected by the dose-solubility ratio. Although this prediction appears to be in accordance with preliminary application, further validation based on more suitable experimental data is required.
590    __
$a bohemika - dle Pubmed
650    02
$a tobolky $7 D002214
650    02
$a vztah mezi dávkou a účinkem léčiva $7 D004305
650    12
$a chemické modely $7 D008956
650    12
$a léčivé přípravky $x aplikace a dávkování $x chemie $7 D004364
650    02
$a rozpustnost $7 D012995
650    02
$a voda $x chemie $7 D014867
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Weiss, Michael $u Section Pharmacokinetics, Department of Pharmacology, Martin Luther University Halle-Wittenberg, Halle, Germany
773    0_
$t Pharmaceutical Research $x 0724-8741 $g Roč. 16, č. 9 (1999), s. 1470-1476 $p Pharm Res $w MED00003779
910    __
$a ABA008 $y 4 $z 0
990    __
$a 20140602182434 $b ABA008
991    __
$a 20190104111129 $b ABA008
999    __
$a ok $b bmc $g 1027241 $s 858833
BAS    __
$a 3
BMC    __
$a 1999 $b 16 $c 9 $d 1470-1476 $i 0724-8741 $m Pharmaceutical research $x MED00003779 $n Pharm Res
GRA    __
$a IZ4034 $p MZ0
LZP    __
$a 2014-05/abbo

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...