-
Je něco špatně v tomto záznamu ?
Does the dose-solubility ratio affect the mean dissolution time of drugs?
Petr Lánský, Michael Weiss
Jazyk angličtina Země Spojené státy americké
Typ dokumentu práce podpořená grantem
Grantová podpora
IZ4034
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Část
Zdroj
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest)
od 1997-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
PubMed
10496667
DOI
10.1023/a:1018923714107
Knihovny.cz E-zdroje
- MeSH
- chemické modely * MeSH
- léčivé přípravky * aplikace a dávkování chemie MeSH
- rozpustnost MeSH
- tobolky MeSH
- voda chemie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Publikační typ
- práce podpořená grantem MeSH
PURPOSE: To present a new model for describing drug dissolution. On the basis of the new model to characterize the dissolution profile by the distribution function of the random dissolution time of a drug molecule, which generalizes the classical first order model. METHODS: Instead of assuming a constant fractional dissolution rate, as in the classical model, it is considered that the fractional dissolution rate is a decreasing function of the dissolved amount controlled by the dose-solubility ratio. The differential equation derived from this assumption is solved and the distribution measures (half-dissolution time, mean dissolution time, relative dispersion of the dissolution time, dissolution time density, and fractional dissolution rate) are calculated. Finally, instead of monotonically decreasing the fractional dissolution rate, a generalization resulting in zero dissolution rate at time origin is introduced. RESULTS: The behavior of the model is divided into two regions defined by q, the ratio of the dose to the solubility level: q < 1 (complete dissolution of the dose, dissolution time) and q > 1 (saturation of the solution, saturation time). The singular case q = 1 is also treated and in this situation the mean as well as the relative dispersion of the dissolution time increase to infinity. The model was successfully fitted to data (1). CONCLUSIONS: This empirical model is descriptive without detailed physical reasoning behind its derivation. According to the model, the mean dissolution time is affected by the dose-solubility ratio. Although this prediction appears to be in accordance with preliminary application, further validation based on more suitable experimental data is required.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14060188
- 003
- CZ-PrNML
- 005
- 20190104110933.0
- 007
- ta
- 008
- 140602s1999 xxud f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1023/a:1018923714107 $2 doi
- 035 __
- $a (PubMed)10496667
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Lánský, Petr $7 xx0062306 $u Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska, Prague. lansky@biomed.cas.cz
- 245 10
- $a Does the dose-solubility ratio affect the mean dissolution time of drugs? / $c Petr Lánský, Michael Weiss
- 520 9_
- $a PURPOSE: To present a new model for describing drug dissolution. On the basis of the new model to characterize the dissolution profile by the distribution function of the random dissolution time of a drug molecule, which generalizes the classical first order model. METHODS: Instead of assuming a constant fractional dissolution rate, as in the classical model, it is considered that the fractional dissolution rate is a decreasing function of the dissolved amount controlled by the dose-solubility ratio. The differential equation derived from this assumption is solved and the distribution measures (half-dissolution time, mean dissolution time, relative dispersion of the dissolution time, dissolution time density, and fractional dissolution rate) are calculated. Finally, instead of monotonically decreasing the fractional dissolution rate, a generalization resulting in zero dissolution rate at time origin is introduced. RESULTS: The behavior of the model is divided into two regions defined by q, the ratio of the dose to the solubility level: q < 1 (complete dissolution of the dose, dissolution time) and q > 1 (saturation of the solution, saturation time). The singular case q = 1 is also treated and in this situation the mean as well as the relative dispersion of the dissolution time increase to infinity. The model was successfully fitted to data (1). CONCLUSIONS: This empirical model is descriptive without detailed physical reasoning behind its derivation. According to the model, the mean dissolution time is affected by the dose-solubility ratio. Although this prediction appears to be in accordance with preliminary application, further validation based on more suitable experimental data is required.
- 590 __
- $a bohemika - dle Pubmed
- 650 02
- $a tobolky $7 D002214
- 650 02
- $a vztah mezi dávkou a účinkem léčiva $7 D004305
- 650 12
- $a chemické modely $7 D008956
- 650 12
- $a léčivé přípravky $x aplikace a dávkování $x chemie $7 D004364
- 650 02
- $a rozpustnost $7 D012995
- 650 02
- $a voda $x chemie $7 D014867
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Weiss, Michael $u Section Pharmacokinetics, Department of Pharmacology, Martin Luther University Halle-Wittenberg, Halle, Germany
- 773 0_
- $t Pharmaceutical Research $x 0724-8741 $g Roč. 16, č. 9 (1999), s. 1470-1476 $p Pharm Res $w MED00003779
- 910 __
- $a ABA008 $y 4 $z 0
- 990 __
- $a 20140602182434 $b ABA008
- 991 __
- $a 20190104111129 $b ABA008
- 999 __
- $a ok $b bmc $g 1027241 $s 858833
- BAS __
- $a 3
- BMC __
- $a 1999 $b 16 $c 9 $d 1470-1476 $i 0724-8741 $m Pharmaceutical research $x MED00003779 $n Pharm Res
- GRA __
- $a IZ4034 $p MZ0
- LZP __
- $a 2014-05/abbo