EEG-Meta-Microstates: Towards a More Objective Use of Resting-State EEG Microstate Findings Across Studies
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
K23 MH118565
NIMH NIH HHS - United States
PubMed
37515678
PubMed Central
PMC10884358
DOI
10.1007/s10548-023-00993-6
PII: 10.1007/s10548-023-00993-6
Knihovny.cz E-resources
- Keywords
- EEG, Functional brain states, Mental states, Meta-analysis, Microstates, Resting-state, Spatial similarity,
- MeSH
- Electroencephalography * MeSH
- Humans MeSH
- Brain * MeSH
- Eye MeSH
- Reproducibility of Results MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Over the last decade, EEG resting-state microstate analysis has evolved from a niche existence to a widely used and well-accepted methodology. The rapidly increasing body of empirical findings started to yield overarching patterns of associations of biological and psychological states and traits with specific microstate classes. However, currently, this cross-referencing among apparently similar microstate classes of different studies is typically done by "eyeballing" of printed template maps by the individual authors, lacking a systematic procedure. To improve the reliability and validity of future findings, we present a tool to systematically collect the actual data of template maps from as many published studies as possible and present them in their entirety as a matrix of spatial similarity. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps from ongoing or published studies. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps in the literature. The analysis of 40 included sets of template maps indicated that: (i) there is a high degree of similarity of template maps across studies, (ii) similar template maps were associated with converging empirical findings, and (iii) representative meta-microstates can be extracted from the individual studies. We hope that this tool will be useful in coming to a more comprehensive, objective, and overarching representation of microstate findings.
Center of Functionally Integrative Neuroscience Aarhus University Aarhus Denmark
Children's Hospital Los Angeles The Saban Research Institute Los Angeles CA 90027 USA
CINETic Center National University of Theatre and Film 1 L Caragiale Bucharest Bucharest Romania
Department of Clinical Neurophysiology Karolinska University Hospital Stockholm Sweden
Department of Neurology Istanbul Eyupsultan Public Hospital Istanbul Turkey
Department of Nuclear Medicine Geneva University Hospital Geneva Switzerland
Department of Psychiatry Harvard Medical School Boston MA USA
Department of Psychology University of Alberta Edmonton AB T6G 2E9 Canada
Department of Psychology University of Fribourg Fribourg Switzerland
Department of Psychology University of Miami Coral Gables FL USA
Life Sciences Centre Institute of Biosciences Vilnius University Vilnius Lithuania
McLean Hospital Belmont MA USA
School of Biomedical Engineering Medical School Shenzhen University Shenzhen China
Translational Research Center University Hospital of Psychiatry University of Bern Bern Switzerland
See more in PubMed
Antonova E, Holding M, Suen HC, Sumich A, Maex R, Nehaniv C. EEG microstates: functional significance and short-term test-retest reliability. Neuroimage Rep. 2022;2:100089. doi: 10.1016/j.ynirp.2022.100089. DOI
Artoni F, Maillard J, Britz J, Seeber M, Lysakowski C, Bréchet L, Tramèr MR, Michel CM. EEG microstate dynamics indicate a U-shaped path to propofol-induced loss of consciousness. NeuroImage. 2022;256:119156. doi: 10.1016/j.neuroimage.2022.119156. PubMed DOI
Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med. 1995;34:537–541. doi: 10.1002/mrm.1910340409. PubMed DOI
Bréchet L, Brunet D, Perogamvros L, Tononi G, Michel CM. EEG microstates of dreams. Sci Rep. 2020;10:17069. doi: 10.1038/s41598-020-74075-z. PubMed DOI PMC
Bréchet L, Brunet D, Perogamvros L, Tononi G, Michel CM. EEG microstates of dreams. Sci Rep. 2020;10:17069. doi: 10.1038/s41598-020-74075-z. PubMed DOI PMC
Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage. 2010;52:1162–1170. doi: 10.1016/j.neuroimage.2010.02.052. PubMed DOI
Castellanos FX, Di Martino A, Craddock RC, Mehta AD, Milham MP. Clinical applications of the functional connectome. NeuroImage. 2013;80:527–540. doi: 10.1016/j.neuroimage.2013.04.083. PubMed DOI PMC
Croce P, Zappasodi F, Capotosto P. Offline stimulation of human parietal cortex differently affects resting EEG microstates. Sci Rep. 2018;8:1287. doi: 10.1038/s41598-018-19698-z. PubMed DOI PMC
Croce P, Quercia A, Costa S, Zappasodi F. EEG microstates associated with intra- and inter-subject alpha variability. Sci Rep. 2020;10:2469. doi: 10.1038/s41598-020-58787-w. PubMed DOI PMC
Croce P, Tecchio F, Tamburro G, Fiedler P, Comani S, Zappasodi F. Brain electrical microstate features as biomarkers of a stable motor output. J Neural Eng. 2022;19:056042. doi: 10.1088/1741-2552/ac975b. PubMed DOI
Custo A, Van De Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM. Electroencephalographic resting-state networks: source localization of Microstates. Brain Connect. 2017;7:671–682. doi: 10.1089/brain.2016.0476. PubMed DOI PMC
Damborská A, Piguet C, Aubry J-M, Dayer AG, Michel CM, Berchio C. Altered electroencephalographic resting-state large-scale Brain Network Dynamics in Euthymic Bipolar Disorder Patients. Front Psychiatry. 2019;10:826. doi: 10.3389/fpsyt.2019.00826. PubMed DOI PMC
Damborská A, Tomescu MI, Honzírková E, Barteček R, Hořínková J, Fedorová S, Ondruš Å, Michel CM (2019b) EEG Resting-State Large-Scale Brain Network Dynamics Are Related to Depressive Symptoms. Front. Psychiatry 10 PubMed PMC
Davis SW, Stanley ML, Moscovitch M, Cabeza R. Resting-state networks do not determine cognitive function networks: a commentary on Campbell and Schacter (2016) Lang Cogn Neurosci. 2017;32:669–673. doi: 10.1080/23273798.2016.1252847. PubMed DOI PMC
De Bock R, Mackintosh AJ, Maier F, Borgwardt S, Riecher-Rössler A, Andreou C. EEG microstates as biomarker for psychosis in ultra-high-risk patients. Transl Psychiatry. 2020;10:300. doi: 10.1038/s41398-020-00963-7. PubMed DOI PMC
Deolindo CS, Ribeiro MW, Aratanha MAA, Scarpari JRS, Forster CHQ, Silva RGA, Machado BS, Amaro Junior E, König T, Kozasa EH. Microstates in complex and dynamical environments: unraveling situational awareness in critical helicopter landing maneuvers. Hum Brain Mapp. 2021;42:3168–3181. doi: 10.1002/hbm.25426. PubMed DOI PMC
Diezig S, Denzer S, Achermann P, Mast FW, Koenig T. EEG Microstate Dynamics Associated with Dream-Like Experiences during the transition to Sleep. Brain Topogr. 2022 doi: 10.1007/s10548-022-00923-y. PubMed DOI PMC
Hanoglu L, Toplutas E, Saricaoglu M, Velioglu HA, Yildiz S, Yulug B (2022) Therapeutic role of repetitive transcranial magnetic stimulation in Alzheimer’s and Parkinson’s Disease: Electroencephalography Microstate correlates. Front Neurosci 16 PubMed PMC
Hu W, Zhang Z, Zhao H, Zhang L, Li L, Huang G, Liang Z (2023) EEG microstate correlates of emotion dynamics and stimulation content during video watching. Cereb. Cortex N. Y. N 1991 33, 523–542. 10.1093/cercor/bhac082 PubMed
Khanna A, Pascual-Leone A, Farzan F. Reliability of resting-state microstate features in Electroencephalography. PLoS ONE. 2014;9:e114163. doi: 10.1371/journal.pone.0114163. PubMed DOI PMC
Kleinert T, Nash K, Leota J, Koenig T, Heinrichs M, Schiller B. A self-controlled mind is reflected by stable Mental Processing. Psychol Sci. 2022;33:2123–2137. doi: 10.1177/09567976221110136. PubMed DOI
Kleinert T, Kalburgi N, Aryan S, Nash D, Schiller K, Koenig B T., n.d. A student’s guide for resting-state microstate analysis PubMed PMC
Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by Millisecond, Year by Year: Normative EEG Microstates and Developmental Stages. NeuroImage 16, 41–48. 10.1006/nimg.2002.1070 PubMed
Koenig T, Studer D, Hubl D, Melie L, Strik WK. Brain connectivity at different time-scales measured with EEG. Philos Trans R Soc B Biol Sci. 2005;360:1015–1024. doi: 10.1098/rstb.2005.1649. PubMed DOI PMC
Lakatos I (1978) The methodology of Scientific Research Programmes: philosophical Papers. Cambridge University Press. 10.1017/CBO9780511621123
Lehmann D. Brain Electric Microstates and Cognition: the atoms of Thought. In: John ER, Harmony T, Prichep LS, Valdés-Sosa M, Valdés-Sosa PA, editors. Machinery of the mind: data, theory, and Speculations about higher brain function. Boston, MA: Birkhäuser Boston; 1990. pp. 209–224.
Lehmann D, Skrandies W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol. 1980;48:609–621. doi: 10.1016/0013-4694(80)90419-8. PubMed DOI
Lehmann D, Ozaki H, Pal I. EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol. 1987;67:271–288. doi: 10.1016/0013-4694(87)90025-3. PubMed DOI
Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int J Psychophysiol. 1998;29:1–11. doi: 10.1016/S0167-8760(97)00098-6. PubMed DOI
Lehmann D, Pascual-Marqui RD, Strik WK, Koenig T. Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis. NeuroImage. 2010;49:1073–1079. doi: 10.1016/j.neuroimage.2009.07.054. PubMed DOI
Liu J, Xu J, Zou G, He Y, Zou Q, Gao J-H. Reliability and individual specificity of EEG microstate characteristics. Brain Topogr. 2020;33:438–449. doi: 10.1007/s10548-020-00777-2. PubMed DOI
Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. NeuroImage. Brain Connectivity Dynamics. 2018;180:577–593. doi: 10.1016/j.neuroimage.2017.11.062. PubMed DOI
Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. NeuroImage. 2012;61:371–385. doi: 10.1016/j.neuroimage.2011.12.039. PubMed DOI
Milz P, Faber PL, Lehmann D, Koenig T, Kochi K, Pascual-Marqui RD. The functional significance of EEG microstates—Associations with modalities of thinking. NeuroImage. 2016;125:643–656. doi: 10.1016/j.neuroimage.2015.08.023. PubMed DOI
Murphy M, Stickgold R, Parr ME, Callahan C, Wamsley EJ. Recurrence of task-related electroencephalographic activity during post-training quiet rest and sleep. Sci Rep. 2018;8:5398. doi: 10.1038/s41598-018-23590-1. PubMed DOI PMC
Musaeus CS, Engedal K, Høgh P, Jelic V, Khanna AR, Kjær TW, Mørup M, Naik M, Oeksengaard A, Santarnecchi E, Snaedal J, Wahlund L, Waldemar G, Andersen BB (2020) Changes in the left temporal microstate are a sign of cognitive decline in patients with Alzheimer’s disease. Brain Behav 10. 10.1002/brb3.1630 PubMed PMC
Nagabhushan Kalburgi S, Whitten AP, Key AP, Bodfish JW. Children with autism produce a Unique Pattern of EEG Microstates during an eyes closed resting-state Condition. Front Hum Neurosci. 2020;14:288. doi: 10.3389/fnhum.2020.00288. PubMed DOI PMC
Nash K, Kleinert T, Leota J, Scott A, Schimel J. Resting-state networks of believers and non-believers: an EEG microstate study. Biol Psychol. 2022;169:108283. doi: 10.1016/j.biopsycho.2022.108283. PubMed DOI
Notturno F, Croce P, Ornello R, Sacco S, Zappasodi F. Yield of EEG features as markers of disease severity in amyotrophic lateral sclerosis: a pilot study. Amyotroph Lateral Scler Front Degener. 2023;24:295–303. doi: 10.1080/21678421.2022.2152696. PubMed DOI
Pascual-Marqui RD, Michel CM, Lehmann D. Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng. 1995;42:658–665. doi: 10.1109/10.391164. PubMed DOI
Perrin F, Pernier J, Bertrand O, Echallier JF. Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol. 1989;72:184–187. doi: 10.1016/0013-4694(89)90180-6. PubMed DOI
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc. Natl. Acad. Sci. 98, 676–682. 10.1073/pnas.98.2.676 PubMed PMC
Ricci L, Croce P, Lanzone J, Boscarino M, Zappasodi F, Tombini M, Di Lazzaro V, Assenza G. Transcutaneous Vagus nerve stimulation modulates EEG microstates and Delta Activity in healthy subjects. Brain Sci. 2020;10:668. doi: 10.3390/brainsci10100668. PubMed DOI PMC
Ricci L, Croce P, Pulitano P, Boscarino M, Zappasodi F, Narducci F, Lanzone J, Sancetta B, Mecarelli O, Di Lazzaro V, Tombini M, Assenza G. Levetiracetam modulates EEG microstates in temporal lobe Epilepsy. Brain Topogr. 2022;35:680–691. doi: 10.1007/s10548-022-00911-2. PubMed DOI PMC
Rieger K, Diaz Hernandez L, Baenninger A, Koenig T (2016) 15 years of Microstate Research in Schizophrenia – where are we? A Meta-analysis. Front Psychiatry 7. 10.3389/fpsyt.2016.00022 PubMed PMC
Schiller B, Koenig T, Heinrichs M. Oxytocin modulates the temporal dynamics of resting EEG networks. Sci Rep. 2019;9:13418. doi: 10.1038/s41598-019-49636-6. PubMed DOI PMC
Schiller B, Kleinert T, Teige-Mocigemba S, Klauer KC, Heinrichs M. Temporal dynamics of resting EEG networks are associated with prosociality. Sci Rep. 2020;10:13066. doi: 10.1038/s41598-020-69999-5. PubMed DOI PMC
Smailovic U, Koenig T, Laukka EJ, Kalpouzos G, Andersson T, Winblad B, Jelic V. EEG time signature in Alzheimer´s disease: functional brain networks falling apart. NeuroImage Clin. 2019;24:102046. doi: 10.1016/j.nicl.2019.102046. PubMed DOI PMC
Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. 106, 13040–13045. 10.1073/pnas.0905267106 PubMed PMC
Spring JN, Tomescu MI, Barral J. A single-bout of endurance Exercise modulates EEG microstates temporal features. Brain Topogr. 2017;30:461–472. doi: 10.1007/s10548-017-0570-2. PubMed DOI
Spring JN, Bourdillon N, Barral J (2018) Resting EEG microstates and autonomic heart rate variability do not return to Baseline one Hour after a Submaximal Exercise. Front Neurosci 12 PubMed PMC
Spring JN, Sallard EF, Trabucchi P, Millet GP, Barral J. Alterations in spontaneous electrical brain activity after an extreme mountain ultramarathon. Biol Psychol. 2022;171:108348. doi: 10.1016/j.biopsycho.2022.108348. PubMed DOI
Tarailis P, Šimkutė D, Koenig T, Griškova-Bulanova I. Relationship between Spatiotemporal Dynamics of the brain at Rest and Self-Reported spontaneous thoughts: an EEG Microstate Approach. J Pers Med. 2021;11:1216. doi: 10.3390/jpm11111216. PubMed DOI PMC
Tarailis P, Koenig T, Michel CM, Griškova-Bulanova I. The functional aspects of resting EEG microstates: a systematic review. Brain Topogr. 2023 doi: 10.1007/s10548-023-00958-9. PubMed DOI
Tomescu MI, Rihs TA, Rochas V, Hardmeier M, Britz J, Allali G, Fuhr P, Eliez S, Michel CM. From swing to cane: sex differences of EEG resting-state temporal patterns during maturation and aging. Dev Cogn Neurosci. 2018;31:58–66. doi: 10.1016/j.dcn.2018.04.011. PubMed DOI PMC
Tomescu MI, Papasteri CC, Sofonea A, Boldasu R, Kebets V, Pistol CAD, Poalelungi C, Benescu V, Podina IR, Nedelcea CI, Berceanu AI, Carcea I. Spontaneous thought and microstate activity modulation by social imitation. NeuroImage. 2022;249:118878. doi: 10.1016/j.neuroimage.2022.118878. PubMed DOI
Vellante F, Ferri F, Baroni G, Croce P, Migliorati D, Pettoruso M, De Berardis D, Martinotti G, Zappasodi F, Giannantonio MD. Euthymic bipolar disorder patients and EEG microstates: a neural signature of their abnormal self experience? J Affect Disord. 2020;272:326–334. doi: 10.1016/j.jad.2020.03.175. PubMed DOI
Wackermann J, Lehmann D, Michel CM, Strik WK. Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. Int J Psychophysiol. 1993;14:269–283. doi: 10.1016/0167-8760(93)90041-M. PubMed DOI
Zanesco AP, King BG, Skwara AC, Saron CD. Within and between-person correlates of the temporal dynamics of resting EEG microstates. NeuroImage. 2020;211:116631. doi: 10.1016/j.neuroimage.2020.116631. PubMed DOI
Zanesco AP, Denkova E, Jha AP. Self-reported mind Wandering and Response Time Variability Differentiate Prestimulus Electroencephalogram Microstate Dynamics during a sustained attention Task. J Cogn Neurosci. 2021;33:28–45. doi: 10.1162/jocn_a_01636. PubMed DOI
Zanesco AP, Denkova E, Jha AP. Associations between self-reported spontaneous thought and temporal sequences of EEG microstates. Brain Cogn. 2021;150:105696. doi: 10.1016/j.bandc.2021.105696. PubMed DOI
Zanesco AP, Skwara AC, King BG, Powers C, Wineberg K, Saron CD. Meditation training modulates brain electric microstates and felt states of awareness. Hum Brain Mapp. 2021;42:3228–3252. doi: 10.1002/hbm.25430. PubMed DOI PMC
Zappasodi F, Croce P, Giordani A, Assenza G, Giannantoni NM, Profice P, Granata G, Rossini PM, Tecchio F. Prognostic Value of EEG Microstates in Acute Stroke. Brain Topogr. 2017;30:698–710. doi: 10.1007/s10548-017-0572-0. PubMed DOI
Zappasodi F, Perrucci MG, Saggino A, Croce P, Mercuri P, Romanelli R, Colom R, Ebisch SJH. EEG microstates distinguish between cognitive components of fluid reasoning. NeuroImage. 2019;189:560–573. doi: 10.1016/j.neuroimage.2019.01.067. PubMed DOI