• This record comes from PubMed

EEG Resting-State Large-Scale Brain Network Dynamics Are Related to Depressive Symptoms

. 2019 ; 10 () : 548. [epub] 20190809

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Background: The few previous studies on resting-state electroencephalography (EEG) microstates in depressive patients suggest altered temporal characteristics of microstates compared to those of healthy subjects. We tested whether resting-state microstate temporal characteristics could capture large-scale brain network dynamic activity relevant to depressive symptomatology. Methods: To evaluate a possible relationship between the resting-state large-scale brain network dynamics and depressive symptoms, we performed EEG microstate analysis in 19 patients with moderate to severe depression in bipolar affective disorder, depressive episode, and recurrent depressive disorder and in 19 healthy controls. Results: Microstate analysis revealed six classes of microstates (A-F) in global clustering across all subjects. There were no between-group differences in the temporal characteristics of microstates. In the patient group, higher depressive symptomatology on the Montgomery-Åsberg Depression Rating Scale correlated with higher occurrence of microstate A (Spearman's rank correlation, r = 0.70, p < 0.01). Conclusion: Our results suggest that the observed interindividual differences in resting-state EEG microstate parameters could reflect altered large-scale brain network dynamics relevant to depressive symptomatology during depressive episodes. Replication in larger cohort is needed to assess the utility of the microstate analysis approach in an objective depression assessment at the individual level.

See more in PubMed

Andrade L, Caraveo-Anduaga JJ, Berglund P, Bijl RV, De Graaf R, Vollebergh W, et al. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys. Int J Methods Psychiatr Res (2003) 12:3–21. 10.1002/mpr.138 PubMed DOI PMC

Eaton WW, Alexandre P, Bienvenu OJ, Clarke D, Martins SS, Nestadt G, et al. The burden of mental disorders. Public Mental Health, Oxford University Press, Oxford, UK: (2012). 10.1093/acprof:oso/9780195390445.003.0001 DOI

Cloutier M, Greene M, Guerin A, Touya M, Wu E. The economic burden of bipolar I disorder in the United States in 2015. J Affective Disord (2018) 226:45–51. 10.1016/j.jad.2017.09.011 PubMed DOI

Angst J, Merikangas KR, Cui L, Van Meter A, Ajdacic-Gross V, Rössler W. Bipolar spectrum in major depressive disorders. Eur Arch Psychiatry Clin Neurosci (2018) 268:741–48. 10.1007/s00406-018-0927-x PubMed DOI

Gong Q, He Y. Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry (2015) 77:223–35. 10.1016/j.biopsych.2014.08.009 PubMed DOI

Iwabuchi SJ, Krishnadas R, Li C, Auer DP, Radua J, Palaniyappan L. Localized connectivity in depression: a meta-analysis of resting state functional imaging studies. Neurosci Biobehav Rev (2015) 51:77–86. 10.1016/j.neubiorev.2015.01.006 PubMed DOI

Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry (2015) 72:603–11. 10.1001/jamapsychiatry.2015.0071 PubMed DOI PMC

Peng D, Liddle EB, Iwabuchi SJ, Zhang C, Wu Z, Liu J, et al. Dissociated large-scale functional connectivity networks of the precuneus in medication-naïve first-episode depression. Psychiatry Res Neuroimaging (2015) 232:250–56. 10.1016/j.pscychresns.2015.03.003 PubMed DOI

Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci (1997) 9:471–81. 10.1176/jnp.9.3.471 PubMed DOI

Fischer AS, Keller CJ, Etkin A. The clinical applicability of functional connectivity in depression: pathways toward more targeted intervention. Biol Psychiatry Cogn Neurosci Neuroimaging (2016) 1:262–70. 10.1016/j.bpsc.2016.02.004 PubMed DOI

Satterthwaite TD, Kable JW, Vandekar L, Katchmar N, Bassett DS, Baldassano CF, et al. Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacol (2015) 40:2258–68. 10.1038/npp.2015.75 PubMed DOI PMC

Wu X, Lin P, Yang J, Song H, Yang R, Yang J. Dysfunction of the cingulo-opercular network in first-episode medication-naive patients with major depressive disorder. J Affective Disord (2016) 200:275–83. 10.1016/j.jad.2016.04.046 PubMed DOI

Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry (2007) 62:429–37. 10.1016/j.biopsych.2006.09.020 PubMed DOI PMC

Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacol (2010) 35:192–16. 10.1038/npp.2009.104 PubMed DOI PMC

Hamilton JP, Chen MC, Gotlib IH. Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiol Dis (2013) 52:4–11. 10.1016/j.nbd.2012.01.015 PubMed DOI PMC

de Pasquale F, Corbetta M, Betti V, Della Penna S. Cortical cores in network dynamics. Neuroimage (2018) 180:370–82. 10.1016/j.neuroimage.2017.09.063 PubMed DOI

Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci (2010) 14(6):277–90. 10.1016/j.tics.2010.04.004 PubMed DOI

Van De Ville D, Britz J, Michel CM. EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci (2010) 107:18179–84. 10.1073/pnas.1007841107 PubMed DOI PMC

Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. Neuroimage (2018) 180:577–93. 10.1016/j.neuroimage.2017.11.062 PubMed DOI

Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage (2012) 61:371–85. 10.1016/j.neuroimage.2011.12.039 PubMed DOI

Lehmann D. Principles of spatial analysis. In: Gevins AS, Remont A, editors. Methods of analysis of brain electrical and magnetic signals. Elsevier; (1987). p. 309–54.

Lehmann D, Ozaki H, Pal I. EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol (1987) 67:271–88. 10.1016/0013-4694(87)90025-3 PubMed DOI

Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, et al. Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage (2013) 80:360–78. 10.1016/j.neuroimage.2013.05.079 PubMed DOI PMC

Chang C, Glover GH. Time–frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage (2010) 50:81–98. 10.1016/j.neuroimage.2009.12.011 PubMed DOI PMC

Honey CJ, Kötter R, Breakspear M, Sporns O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci (2007) 104:10240–45. 10.1073/pnas.0701519104 PubMed DOI PMC

Khanna A, Pascual-Leone A, Michel CM, Farzan F. Microstates in resting-state EEG: current status and future directions. Neurosci Biobehav Rev (2015) 49:105–13. 10.1016/j.neubiorev.2014.12.010 PubMed DOI PMC

Strik WK, Dierks T, Becker T, Lehmann D. Larger topographical variance and decreased duration of brain electric microstates in depression. J Neural Transm (1995) 99:213–22. 10.1007/BF01271480 PubMed DOI

Ihl R, Brinkmeyer J. Differential diagnosis of aging, dementia of the Alzheimer type and depression with EEG-segmentation. Dement Geriatr Cogn Disord (1999) 10:64–9. 10.1159/000017103 PubMed DOI

Atluri S, Wong W, Moreno S, Blumberger DM, Daskalakis ZJ, Farzan F. Selective modulation of brain network dynamics by seizure therapy in treatment-resistant depression. NeuroImage Clin (2018) 20:1176–90. 10.1016/j.nicl.2018.10.015 PubMed DOI PMC

Drobisz D, Damborská A. Deep brain stimulation targets for treating depression. Behav Brain Res (2019) 359:266–73. 10.1016/j.bbr.2018.11.004 PubMed DOI

Bazire S. Benzodiazepine equivalent doses. In: Psychotropic Drug Directory. Cheltenham, UK: Lloyd-Reinhold Communications; (2014).

Williams JBW, Kobak KA. Development and reliability of a structured interview guide for the Montgomery Asberg Depression Rating Scale (SIGMA). Br J Psychiatry (2008) 192:52–8. 10.1192/bjp.bp.106.032532 PubMed DOI

Guy W. ed. ECDEU Assessment Manual for Psychopharmacology. Rockville, MD: US Department of Health, Education, and Welfare Public Health Service Alcohol, Drug Abuse, and Mental Health Administration; (1976).

Jung T, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol (2000) 111:1745–58. 10.1016/S1388-2457(00)00386-2 PubMed DOI

Perrin F, Pernier J, Bertrand O, Echallier JF. Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol (1989) 72:184–87. 10.1016/0013-4694(89)90180-6 PubMed DOI

Brunet D, Murray MM, Michel CM. Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci (2011) 813870:1–15. 10.1155/2011/813870 PubMed DOI PMC

Murray MM, Brunet D, Michel CM. Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr (2008) 20:249–64. 10.1007/s10548-008-0054-5 PubMed DOI

Pascual-Marqui RD, Michel CM, Lehmann D. Segmentation of brain electrical activity into microstates; model estimation and validation. IEEE Trans Biomed Eng (1995) 42:658–65. 10.1109/10.391164 PubMed DOI

Bréchet L, Brunet D, Birot G, Gruetter R, Michel CM, Jorge J. Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage (2019) 194:82–92. 10.1016/j.neuroimage.2019.03.029 PubMed DOI

Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, et al. Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage (2002) 16:41–8. 10.1006/nimg.2002.1070 PubMed DOI

Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage (2010) 52:1162–70. 10.1016/j.neuroimage.2010.02.052 PubMed DOI

Tomescu MI, Rihs TA, Becker R, Britz J, Custo A, Grouiller F, et al. Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: a vulnerability marker of schizophrenia? Schizophr Res (2014) 157:175–81. 10.1016/j.schres.2014.05.036 PubMed DOI

Michel CM, Brandeis D, Skrandies W, Pascual R, Strik WK, Dierks T. Global field power: a ‘time-honoured’ index for EEG/EP map analysis. Int J Psychophysiol (1993) 15:1–2. 10.1016/0167-8760(93)90088-7 PubMed DOI

Santarnecchi E, Khanna AR, Musaeus CS, Benwell CSY, Davila P, Farzan F, et al. EEG microstate correlates of fluid intelligence and response to cognitive training. Brain Topogr (2017) 30:502–20. 10.1007/s10548-017-0565-z PubMed DOI

Benjamini Y. Discovering the false discovery rate. J R Stat Soc Ser B Stat Methodol (2010) 72:405–16. 10.1111/j.1467-9868.2010.00746.x DOI

Custo A, Van De Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM. Electroencephalographic resting-state networks: source localization of microstates. Brain Connect (2017) 7:671–82. 10.1089/brain.2016.0476 PubMed DOI PMC

Buchsbaum BR, Hickok G, Humphries C. Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cogn Sci (2001) 25:663–78. 10.1207/s15516709cog2505_2 DOI

Zhong X, Pu W, Yao S. Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-naïve patients with major depressive disorder: a meta-analysis of resting-state fMRI data. J Affective Disord (2016) 206:280–86. 10.1016/j.jad.2016.09.005 PubMed DOI

Ke Z, Qing G, Zhiliang L, Fei X, Xiao S, Huafu C, et al. Abnormal functional connectivity density in first-episode, drug-naïve adult patients with major depressive disorder. J Affect Disord (2016) 194:153–8. 10.1016/j.jad.2015.12.081 PubMed DOI

Liu Z, Xu C, Xu Y, Wang Y, Zhao B, Lv Y, et al. Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res (2010) 182:211–15. 10.1016/j.pscychresns.2010.03.004 PubMed DOI

Shen T, Qiu M, Li C, Zhang J, Wu Z, Wang B, et al. Altered spontaneous neural activity in first-episode, unmedicated patients with major depressive disorder. Neuroreport (2014) 25:1302–07. 10.1097/WNR.0000000000000263 PubMed DOI

Tadayonnejad R, Yang S, Kumar A, Ajilore O. Clinical, cognitive, and functional connectivity correlations of resting-state intrinsic brain activity alterations in unmedicated depression. J Affective Disord (2015) 172:241–50. 10.1016/j.jad.2014.10.017 PubMed DOI PMC

Kinoshita T, Strik WK, Michel CM, Yagyu T, Saito M, Lehmann D. Microstate segmentation of spontaneous multichannel EEG map series under diazepam and sulpiride. Pharmacopsychiatry (1995) 28:51–5. 10.1055/s-2007-979588 PubMed DOI

Coste CP, Kleinschmidt A. Cingulo-opercular network activity maintains alertness. Neuroimage (2016) 128:264–72. 10.1016/j.neuroimage.2016.01.026 PubMed DOI

Sadaghiani S, D’Esposito M. Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cereb Cortex (2015) 25:2763–73. 10.1093/cercor/bhu072 PubMed DOI PMC

Gusnard DA, Raichle ME. Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci (2001) 2:685–694. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...