• This record comes from PubMed

Altered Electroencephalographic Resting-State Large-Scale Brain Network Dynamics in Euthymic Bipolar Disorder Patients

. 2019 ; 10 () : 826. [epub] 20191115

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Background: Neuroimaging studies provided evidence for disrupted resting-state functional brain network activity in bipolar disorder (BD). Electroencephalographic (EEG) studies found altered temporal characteristics of functional EEG microstates during depressive episode within different affective disorders. Here we investigated whether euthymic patients with BD show deviant resting-state large-scale brain network dynamics as reflected by altered temporal characteristics of EEG microstates. Methods: We used high-density EEG to explore between-group differences in duration, coverage, and occurrence of the resting-state functional EEG microstates in 17 euthymic adults with BD in on-medication state and 17 age- and gender-matched healthy controls. Two types of anxiety, state and trait, were assessed separately with scores ranging from 20 to 80. Results: Microstate analysis revealed five microstates (A-E) in global clustering across all subjects. In patients compared to controls, we found increased occurrence and coverage of microstate A that did not significantly correlate with anxiety scores. Conclusion: Our results provide neurophysiological evidence for altered large-scale brain network dynamics in BD patients and suggest the increased presence of A microstate to be an electrophysiological trait characteristic of BD.

See more in PubMed

Cloutier M, Greene M, Guerin A, Touya M, Wu E. The economic burden of bipolar I disorder in the United States in 2015. J Affect Disord (2018) 226:45–51. 10.1016/j.jad.2017.09.011 PubMed DOI

Eaton WW, Alexandre P, Bienvenu OJ, Clarke D, Martins SS, Nestadt G, et al. The burden of mental disorders. In: Eaton WW, editor. Public Mental Health. Oxford, UK: Oxford University Press; (2012). 10.1093/acprof:oso/9780195390445.003.0001. DOI

Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, et al. Prevalence and correlates of bipolar spectrum disorder in the World Mental health survey initiative. Arch Gen Psychiatry (2011) 68:241–51. 10.1001/archgenpsychiatry.2011.12 PubMed DOI PMC

Ferrari AJ, Stockings E, Khoo JP, Erskine HE, Degenhardt L, Vos T, et al. The prevalence and burden of bipolar disorder: findings from the Global Burden of disease study 2013. Bipolar Disord. (2016) 18:440–50. 10.1111/bdi.12423 PubMed DOI

Hirschfeld RMA. Screening for bipolar disorder. Am J Managed Care (2007) 13:S164–9. PubMed

Vieta E, Salagre E, Grande I, Carvalho AF, Fernandes BS, Berk M, et al. Early intervention in Bipolar disorder. Am J Psychiatry (2018) 175:411–26. 10.1176/appi.ajp.2017.17090972 PubMed DOI

Chen CH, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord (2011) 13:1–15. 10.1111/j.1399-5618.2011.00893.x PubMed DOI

Houenou J, Frommberger J, Carde S, Glasbrenner M, Diener C, Leboyer M, et al. Neuroimaging-based markers of bipolar disorder: evidence from two meta-analyses. J Affect Disord (2011) 132:344–55. 10.1016/j.jad.2011.03.016 PubMed DOI

Kupferschmidt DA, Zakzanis KK. Toward a functional neuroanatomical signature of bipolar disorder: quantitative evidence from the neuroimaging literature. Psychiatry Res Neuroimaging (2011) 193:71–9. 10.1016/j.pscychresns.2011.02.011 PubMed DOI

Piguet C, Fodoulian L, Aubry JM, Vuilleumier P, Houenou J. Bipolar disorder: functional neuroimaging markers in relatives. Neurosci Biobehav. Rev (2015) 57:284–96. 10.1016/j.neubiorev.2015.08.015 PubMed DOI

Vargas C, López-Jaramillo C, Vieta E. A systematic literature review of resting state network-functional MRI in bipolar disorder. J Affect Disord (2013) 150:727–35. 10.1016/j.jad.2013.05.083 PubMed DOI

Strakowski SM, Adler CM, Almeida J, Altshuler LL, Blumberg HP, Chang KD, et al. The functional neuroanatomy of bipolar disorder: A consensus model. Bipolar Disord (2012) 14:313–25. 10.1111/j.1399-5618.2012.01022.x PubMed DOI PMC

Chase HW, Phillips ML. Elucidating neural network functional connectivity abnormalities in bipolar disorder: toward a harmonized methodological approach. Biol Psychiatry Cogn. Neurosci Neuroimaging (2016) 1:288–98. 10.1016/j.bpsc.2015.12.006 PubMed DOI PMC

Rey G, Piguet C, Benders A, Favre S, Eickhoff SB, Aubry JM, et al. Resting-state functional connectivity of emotion regulation networks in euthymic and non-euthymic bipolar disorder patients. Eur Psychiatry (2016) 34:56–63. 10.1016/j.eurpsy.2015.12.005 PubMed DOI

Wang Y, Zhong S, Jia Y, Sun Y, Wang B, Liu T, et al. Disrupted resting-state functional connectivity in nonmedicated bipolar disorder. Radiology (2016) 280:529–36. 10.1148/radiol.2016151641 PubMed DOI

de Pasquale. F, Corbetta M, Betti. V, Penna Della. Cortical cores in network dynamics. Neuroimage (2018) 180:370–82S. 10.1016/j.neuroimage.2017.09.063 PubMed DOI

Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci (2010) 14:277–90. 10.1016/j.tics.2010.04.004 PubMed DOI

Pascual-Marqui RD, Michel CM, Lehmann D. Segmentation of brain electrical activity into microstates; model estimation and validation. IEEE Trans Biomed Eng. (1995) 42:658–65. 10.1109/10.391164 PubMed DOI

Van De Ville D, Britz J, Michel CM. EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci (2010) 107:18179–84. 10.1073/pnas.1007841107 PubMed DOI PMC

Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. Neuroimage (2018) 180:577–93. 10.1016/j.neuroimage.2017.11.062 PubMed DOI

Lehmann D, Ozaki H, Pal I. EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr. Clin Neurophysiol. (1987) 67:271–88. 10.1016/0013-4694(87)90025-3 PubMed DOI

Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, et al. Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage (2002) 16:41–8. 10.1006/nimg.2002.1070 PubMed DOI

Custo A, Van De Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM. Electroencephalographic resting-state networks: source localization of microstates. Brain Connectivity (2017) 7:671–82. 10.1089/brain.2016.0476 PubMed DOI PMC

Bréchet L, Brunet D, Birot G, Gruetter R, Michel CM, Jorge J. Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage (2019) 194:82–92. 10.1016/j.neuroimage.2019.03.029 PubMed DOI

Khanna A, Pascual-Leone A, Michel CM, Farzan F. Microstates in resting-state EEG: Current status and future directions. Neurosci Biobehav. Rev (2015) 49:105–13. 10.1016/j.neubiorev.2014.12.010 PubMed DOI PMC

Changeux JP, Michel CM. Mechanism of neural integration at the brain-scale Level. In: Grillner S, Graybiel AM, editors. Microcircuits. Cambridge, Mass, USA: MIT Press; (2004). p. 347–70.

Lehmann D. Brain Electric microstates and cognition: the atoms of thought. In: John ER, Harmony T, Prichep LS, Valdés-Sosa M, Valdés-Sosa PA, editors. Machinery of the Mind. Birkhäuser, Boston, MA, USA: (1990). p. 209–24. 10.1007/978-1-4757-1083-0_10 DOI

Tomescu MI, Rihs TA, Becker R, Britz J, Custo A, Grouiller F, et al. Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: a vulnerability marker of schizophrenia? Schizophr. Res (2014) 157:175–81. 10.1016/j.schres.2014.05.036 PubMed DOI

Tomescu MI, Rihs TA, Roinishvili M, Karahanoglu FI, Schneider M, Menghetti S, et al. Schizophrenia patients and 22q11.2 deletion syndrome adolescents at risk express the same deviant patterns of resting state EEG microstates: a candidate endophenotype of schizophrenia. Schizophr. Res Cogn. (2015) 2:159–65. 10.1016/j.scog.2015.04.005 PubMed DOI PMC

Andreou C, Faber PL, Leicht G, Schoettle D, Polomac N, Hanganu-Opatz IL, et al. Resting-state connectivity in the prodromal phase of schizophrenia: Insights from EEG microstates. Schizophr. Res (2014) 152:513–20. 10.1016/j.schres.2013.12.008 PubMed DOI

Gschwind M, Hardmeier M, Van De Ville D, Tomescu MI, Penner I, Naegelin Y, et al. Fluctuations of spontaneous EEG topographies predict disease state in relapsing-remitting multiple sclerosis. NeuroImage Clin (2016) 12:466–77. 10.1016/j.nicl.2016.08.008 PubMed DOI PMC

Atluri S, Wong W, Moreno S, Blumberger DM, Daskalakis ZJ, Farzan F. Selective modulation of brain network dynamics by seizure therapy in treatment-resistant depression. NeuroImage Clin (2018) 20:1176–90. 10.1016/j.nicl.2018.10.015 PubMed DOI PMC

Sverak T, Albrechtova L, Lamos M, Rektorova I, Ustohal L. Intensive repetitive transcranial magnetic stimulation changes EEG microstates in schizophrenia: A pilot study. Schizophr. Res (2018) 193:451–2. 10.1016/j.schres.2017.06.044 PubMed DOI

Strik WK, Dierks T, Becker T, Lehmann D. Larger topographical variance and decreased duration of brain electric microstates in depression. J Neural Transm (1995) 99:213–22. 10.1007/BF01271480 PubMed DOI

Damborská A, Tomescu MI, Honzírková E, Barteček R, Hořínková J, Fedorová S, et al. EEG resting-state large-scale brain network dynamics are related to depressive symptoms. Front Psychiatry (2019) 548:10. 10.3389/fpsyt.2019.00548 PubMed DOI PMC

Piguet C, Dayer A, Aubry JM. Biomarkers and vulnerability to bipolar disorders. Schweiz Arch Neurol Psychiatr (2016) 167:57–67. 10.4414/sanp.2016.00387 DOI

Berchio C, Piguet C, Michel CM, Cordera P, Rihs TA, Dayer AG, et al. Dysfunctional gaze processing in bipolar disorder. NeuroImage Clin (2017) 16:545–56. 10.1016/j.nicl.2017.09.006 PubMed DOI PMC

Nurnberger JI, Jr., Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J, et al. Diagnostic interview for genetic studies: Rationale, unique features, and training. Arch Gen Psychiatry (1994) 51:849–59. 10.1001/archpsyc.1994.03950110009002 PubMed DOI

Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry (1978) 133:429–35. 10.1192/bjp.133.5.429 PubMed DOI

Williams JBW, Kobak KA. Development and reliability of a structured interview guide for the Montgomery Asberg depression rating scale (sigma). Br J Psychiatry (2008) 192:52–8. 10.1192/bjp.bp.106.032532 PubMed DOI

Simon NM, Otto MW, Wisniewski SR, Fossey M, Sagduyu K, Frank E, et al. Anxiety disorder comorbidity in bipolar disorder patients: data from the first 500 participants in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Am J Psychiatry (2004) 161:2222–9. 10.1176/appi.ajp.161.12.2222 PubMed DOI

Simon NM, Zalta AK, Otto MW, Ostacher MJ, Fischmann D, Chow CW, et al. The association of comorbid anxiety disorders with suicide attempts and suicidal ideation in outpatients with bipolar disorder. J Psychiatr Res (2007) 41:255–64. 10.1016/j.jpsychires.2006.08.004 PubMed DOI

Wiedemann G, Stevens A, Pauli P, Dengler W. Decreased duration and altered topography of electroencephalographic microstates in patients with panic disorder. Psychiatry Res Neuroimaging (1998) 84:37–48. 10.1016/S0925-4927(98)00044-4 PubMed DOI

Spielberger CD, Gorsuch RL, Lushene RE, (1970). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA, USA: Consulting Psychologists Press.

Jung T, Makeig S, Westerfield M, Townsend J, Courchesne E.c, et al. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol. (2000) 111:1745–58. 10.1016/S1388-2457(00)00386-2 PubMed DOI

Perrin F, Pernier J, Bertrand O, Echallier JF. Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin Neurophysiol. (1989) 72:184–7. 10.1016/0013-4694(89)90180-6 PubMed DOI

Brunet D, Murray M, Michel CM. Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell. Neurosci (2011) 2011, 813870. 10.1155/2011/813870. PubMed DOI PMC

Murray MM, Brunet D, Michel CM. Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr. (2008) 20:249–64. 10.1007/s10548-008-0054-5 PubMed DOI

Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage (2010) 52:1162–70. 10.1016/j.neuroimage.2010.02.052 PubMed DOI

Michel CM, Brandeis D, Skrandies W, Pascual R, Strik WK, Dierks T, et al. Global field power: a 'time-honoured' index for EEG/EP map analysis. Int J Psychophysiol. (1993) 15:1–2. 10.1016/0167-8760(93)90088-7 PubMed DOI

Santarnecchi E, Khanna AR, Musaeus CS, Benwell CSY, Davila P, Farzan F, et al. EEG microstate correlates of fluid intelligence and response to cognitive training. Brain Topogr. (2017) 30:502–20. 10.1007/s10548-017-0565-z PubMed DOI

Benjamini Y. Discovering the false discovery rate. J R Stat Soc Ser B Stat Methodol (2010) 72:405–16. 10.1111/j.1467-9868.2010.00746.x DOI

Niedermeyer E. Niedermeyer's electroencephalography: basic principles, clinical applications, and related fields. Philadelphia , PA, USA: Lippincott Williams & Wilkins; (2011).

Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia (1971) 9:97–113. 10.1016/0028-3932(71)90067-4 PubMed DOI

Yin Z, Chang M, Wei S, Jiang X, Zhou Y, Cui L, et al. Decreased functional connectivity in insular subregions in depressive episodes of bipolar disorder and major depressive disorder. Front Neurosci (2018) 12, 842. 10.3389/fnins.2018.00842. PubMed DOI PMC

Reinke B, de Ven V, Matura S, Linden DEJ, Oertel-Knöchel V. Altered intrinsic functional connectivity in language-related brain regions in association with verbal memory performance in euthymic bipolar patients. Brain Sci (2013) 3:1357–73. 10.3390/brainsci3031357 PubMed DOI PMC

Gong J, Chen G, Jia Y, Zhong S, Zhao L, Luo X, et al. Disrupted functional connectivity within the default mode network and salience network in unmedicated bipolar II disorder. Prog Neuro-Psychopharmacol. Biol Psychiatry (2019) 88:11–8. 10.1016/j.pnpbp.2018.06.012 PubMed DOI

Öngür D, Lundy M, Greenhouse I, Shinn AK, Menon V, Cohen BM, et al. Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res Neuroimaging (2010) 183:59–68. 10.1016/j.pscychresns.2010.04.008 PubMed DOI PMC

Minuzzi L, Syan SK, Smith M, Hall A, Hall GBC, Frey BN. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder. Aust New Z J Psychiatry (2018) 52:1075–83. 10.1177/0004867417746001 PubMed DOI

Li G, Liu P, Andari E, Zhang A, Zhang K. The role of amygdala in patients with euthymic bipolar disorder during resting state. Front Psychiatry (2018) 9, 445. 10.3389/fpsyt.2018.00445 PubMed DOI PMC

Albert U, Rosso G, Maina G, Bogetto F. Impact of anxiety disorder comorbidity on quality of life in euthymic bipolar disorder patients: differences between bipolar I and II subtypes. J Affect Disord (2008) 105:297–303. 10.1016/j.jad.2007.05.020 PubMed DOI

Custo A, Vulliemoz S, Grouiller F, Van De Ville D, Michel C. EEG source imaging of brain states using spatiotemporal regression. Neuroimage (2014) 96:106–16. 10.1016/j.neuroimage.2014.04.002 PubMed DOI

Phelps EA, Ling S, Carrasco M. Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychol Sci (2006) 17:292–9. 10.1111/j.1467-9280.2006.01701.x PubMed DOI PMC

Laretzaki G, Plainis S, Argyropoulos S, Pallikaris IG, Bitsios P. Threat and anxiety affect visual contrast perception. J Psychopharmacol (2010) 24:667–75. 10.1177/0269881108098823 PubMed DOI

Goldin PR, Manber T, Hakimi S, Canli T, Gross JJ. Neural bases of social anxiety disorder: Emotional reactivity and cognitive regulation during social and physical threat. Arch Gen Psychiatry (2009) 66:170–80. 10.1001/archgenpsychiatry.2008.525 PubMed DOI PMC

Al Zoubi O, Mayeli A, Tsuchiyagaito A, Misaki M, Zotev V, Refai H, et al. EEG microstates temporal dynamics differentiate individuals with mood and anxiety disorders from healthy subjects. Front Hum Neurosci (2019) 13, 56. 10.3389/fnhum.2019.00056 PubMed DOI PMC

Nishida K, Morishima Y, Yoshimura M, Isotani T, Irisawa S, Jann K, et al. EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's disease. Clin Neurophysiol. (2013) 124:1106–14. 10.1016/j.clinph.2013.01.005 PubMed DOI

Lehmann D, Faber PL, Galderisi S, Herrmann WM, Kinoshita T, Koukkou M, et al. EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study. Psychiatry Res Neuroimaging (2005) 138:141–56. 10.1016/j.pscychresns.2004.05.007 PubMed DOI

Martino M, Magioncalda P, Huang Z, Conio B, Piaggio N, Duncan NW, et al. Contrasting variability patterns in the default mode and sensorimotor networks balance in bipolar depression and mania. Proc Natl Acad Sci USA (2016) 113:4824–9. 10.1073/pnas.1517558113 PubMed DOI PMC

Conio B, Magioncalda P, Martino M, Tumati S, Capobianco L, Escelsior A, et al. Opposing patterns of neuronal variability in the sensorimotor network mediate cyclothymic and depressive temperaments. Hum Brain Mapp. (2019) 40:1344–52. 10.1002/hbm.24453 PubMed DOI PMC

Seitzman BA, Abell M, Bartley SC, Erickson MA, Bolbecker AR, Hetrick WP. Cognitive manipulation of brain electric microstates. Neuroimage (2017) 146:533–43. 10.1016/j.neuroimage.2016.10.002 PubMed DOI PMC

Basar E, Güntekin B, Atagün I, Turp Gölbas B, Tülay E, Özerdem A. Brain's alpha activity is highly reduced in euthymic bipolar disorder patients. Cogn. Neurodynamics (2012) 6:11–20. 10.1007/s11571-011-9172-y PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...