• This record comes from PubMed

Imaging spectroscopy reveals the effects of topography and logging on the leaf chemistry of tropical forest canopy trees

. 2020 Feb ; 26 (2) : 989-1002. [epub] 20191217

Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
INTER-TRANSFER LTT17017 Ministry of Education, Youth and Sports of the Czech Republic - International
Sime Darby Foundation - International
NE/K016377/1 Natural Environment Research Council - International
Leverhulme Trust - International
Frank Jackson Trust - International

Logging, pervasive across the lowland tropics, affects millions of hectares of forest, yet its influence on nutrient cycling remains poorly understood. One hypothesis is that logging influences phosphorus (P) cycling, because this scarce nutrient is removed in extracted timber and eroded soil, leading to shifts in ecosystem functioning and community composition. However, testing this is challenging because P varies within landscapes as a function of geology, topography and climate. Superimposed upon these trends are compositional changes in logged forests, with species with more acquisitive traits, characterized by higher foliar P concentrations, more dominant. It is difficult to resolve these patterns using traditional field approaches alone. Here, we use airborne light detection and ranging-guided hyperspectral imagery to map foliar nutrient (i.e. P, nitrogen [N]) concentrations, calibrated using field measured traits, over 400 km2 of northeastern Borneo, including a landscape-level disturbance gradient spanning old-growth to repeatedly logged forests. The maps reveal that canopy foliar P and N concentrations decrease with elevation. These relationships were not identified using traditional field measurements of leaf and soil nutrients. After controlling for topography, canopy foliar nutrient concentrations were lower in logged forest than in old-growth areas, reflecting decreased nutrient availability. However, foliar nutrient concentrations and specific leaf area were greatest in relatively short patches in logged areas, reflecting a shift in composition to pioneer species with acquisitive traits. N:P ratio increased in logged forest, suggesting reduced soil P availability through disturbance. Through the first landscape scale assessment of how functional leaf traits change in response to logging, we find that differences from old-growth forest become more pronounced as logged forests increase in stature over time, suggesting exacerbated phosphorus limitation as forests recover.

See more in PubMed

Acres, B. D. , Bower, R. P. , Burrough, P. A. , Folland, C. F. , Kalsi, M. S. , Thomas, P. , & Wright, P. S. (1975). The soils of Sabah. London, UK: Land Resource Division, Ministry of Overseas Development.

Asner, G. P. , Anderson, C. B. , Martin, R. E. , Tupayachi, R. , Knapp, D. E. , & Sinca, F. (2015). Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy. Nature Geoscience, 8, 567–573. 10.1038/ngeo2443 DOI

Asner, G. P. , & Martin, R. E. (2009). Airborne spectranomics: Mapping canopy chemical and taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment, 7(5), 269–276. 10.1890/070152 DOI

Asner, G. P. , & Martin, R. E. (2016a). Convergent elevation trends in canopy chemical traits of tropical forests. Global Change Biology, 22, 2216–2227. 10.1111/gcb.13164 PubMed DOI

Asner, G. P. , & Martin, R. E. (2016b). Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Global Ecology and Conservation, 8, 212–219. 10.1016/j.gecco.2016.09.010 DOI

Asner, G. P. , Martin, R. E. , Anderson, C. B. , & Knapp, D. E. (2015). Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sensing of Environment, 158, 15–27. 10.1016/j.rse.2014.11.011 DOI

Asner, G. P. , Martin, R. E. , Anderson, C. B. , Kryston, K. , Vaughn, N. , Knapp, D. E. , … Malhi, Y. (2017). Scale dependence of canopy trait distributions along a tropical forest elevation gradient. New Phytologist, 214, 973–988. 10.1111/nph.14068 PubMed DOI

Asner, G. P. , Martin, R. E. , Ford, A. J. , Metcalfe, D. J. , & Liddell, M. J. (2009). Leaf chemical and spectral diversity in Australian tropical forests. Ecological Applications, 19, 236–253. 10.1890/08-0023.1 PubMed DOI

Asner, G. P. , Martin, R. E. , Tupayachi, R. , Emerson, R. , Martinez, P. , Sinca, F. , … Lugo, A. E. (2011). Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests. Ecological Applications, 21, 85–98. 10.1890/09-1999.1 PubMed DOI

Asner, G. P. , & Mascaro, J. (2014). Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sensing of Environment, 140, 614–624. 10.1016/j.rse.2013.09.023 DOI

Balzotti, C. S. , & Asner, G. P. (2018). Biotic and abiotic controls over canopy function and structure in humid Hawaiian forests. Ecosystems, 21(2), 331–348. 10.1007/s10021-017-0151-y DOI

Baraloto, C. , Hérault, B. , Paine, C. E. T. , Massot, H. , Blanc, L. , Bonal, D. , … Sabatier, D. (2012). Contrasting taxonomic and functional responses of a tropical tree community to selective logging. Journal of Applied Ecology, 49, 861–870. 10.1111/j.1365-2664.2012.02164.x DOI

Both, S. , Riutta, T. , Paine, C. E. T. , Elias, D. M. O. , Cruz, R. S. , Jain, A. , … Burslem, D. F. R. P. (2019). Logging and soil nutrients independently explain plant trait expression in tropical forests. New Phytologist, 221, 1853–1865. 10.1111/nph.15444 PubMed DOI

Brokaw, N. V. L. (1985). Gap‐phase regeneration in a tropical forest. Ecology, 66, 682–687. 10.2307/1940529 DOI

Brookshire, E. N. J. , Gerber, S. , Menge, D. N. L. , & Hedin, L. O. (2012). Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecology Letters, 15, 9–16. 10.1111/j.1461-0248.2011.01701.x PubMed DOI

Carreño‐Rocabado, G. , Peña‐Claros, M. , Bongers, F. , Alarcón, A. , Licona, J.‐C. , & Poorter, L. (2012). Effects of disturbance intensity on species and functional diversity in a tropical forest. Journal of Ecology, 100, 1453–1463. 10.1111/j.1365-2745.2012.02015.x DOI

Carreño‐Rocabado, G. , Peña‐Claros, M. , Bongers, F. , Díaz, S. , Quétier, F. , Chuviña, J. , & Poorter, L. (2016). Land‐use intensification effects on functional properties in tropical plant communities. Ecological Applications, 26, 174–189. 10.1890/14-0340 PubMed DOI

Chadwick, K. D. , & Asner, G. P. (2016). Organismic‐scale remote sensing of canopy foliar traits in lowland tropical forests. Remote Sensing, 8, 87 10.3390/rs8020087 DOI

Chadwick, K. D. , & Asner, G. P. (2018). Landscape evolution and nutrient rejuvenation reflected in Amazon forest canopy chemistry. Ecology Letters, 21(7), 978–988. 10.1111/ele.12963 PubMed DOI

Cleveland, C. C. , Reed, S. C. , & Townsend, A. R. (2006). Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology, 87, 492–503. 10.1890/05-0525 PubMed DOI

Condit, R. , Engelbrecht, B. M. J. , Pino, D. , Pérez, R. , & Turner, B. L. (2013). Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences of the United States of America, 110, 5064–5068. 10.1073/pnas.1218042110 PubMed DOI PMC

Coomes, D. A. , & Grubb, P. J. (2000). Impacts of root competition in forests and woodlands: A theoretical framework and review of experiments. Ecological Monographs, 70, 171–207. 10.2307/2657174 DOI

Crews, T. E. (2016). Nitrogen limitation disappears with succession in many lowland tropical rainforests – As expected. Why the persistence in temperate latitudes? New Phytologist, 209, 891–893. 10.1111/nph.13818 PubMed DOI

Denslow, J. S. , Ellison, A. M. , & Sanford, R. E. (1998). Treefall gap size effects on above‐ and below‐ground processes in a tropical wet forest. Journal of Ecology, 86, 597–609. 10.1046/j.1365-2745.1998.00295.x DOI

Díaz, S. , Kattge, J. , Cornelissen, J. H. C. , Wright, I. J. , Lavorel, S. , Dray, S. , … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529, 167–171. 10.1038/nature16489 PubMed DOI

Doughty, C. E. , Santos‐Andrade, P. E. , Goldsmith, G. R. , Blonder, B. , Shenkin, A. , Bentley, L. P. , … Malhi, Y. (2017). Can leaf spectroscopy predict leaf and forest traits along a Peruvian tropical forest elevation gradient? Journal of Geophysical Research: Biogeosciences, 122(11), 2952–2965. 10.1002/2017JG003883 DOI

Edwards, D. P. , Tobias, J. A. , Sheil, D. , Meijaard, E. , & Laurance, W. F. (2014). Maintaining ecosystem function and services in logged tropical forests. Trends in Ecology & Evolution, 29, 511–520. 10.1016/j.tree.2014.07.003 PubMed DOI

Ewers, R. M. , Didham, R. K. , Fahrig, L. , Ferraz, G. , Hector, A. , Holt, R. D. , … Turner, E. C. (2011). A large‐scale forest fragmentation experiment: The stability of altered forest ecosystems project. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1582), 3292–3302. 10.1098/rstb.2011.0049 PubMed DOI PMC

Feilhauer, H. , Asner, G. P. , Martin, R. E. , & Schmidtlein, S. (2010). Brightness‐normalized partial least squares regression for hyperspectral data. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 1947–1957. 10.1016/j.jqsrt.2010.03.007 DOI

Fisher, B. , Edwards, D. P. , Giam, X. , & Wilcove, D. S. (2011). The high costs of conserving Southeast Asia's lowland rainforests. Frontiers in Ecology and the Environment, 9, 329–334. 10.1890/100079 DOI

Gao, B.‐C. , Montes, M. J. , Davis, C. O. , & Goetz, A. F. H. (2009). Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment, 113, S17–S24. 10.1016/j.rse.2007.12.015 DOI

Ghosh, U. , Chatterjee, A. , & Bremer, E. (2018). Determining the moisture and plant effect on nutrient release, and plant nutrient uptake using ion exchange resin membrane. Communications in Soil Science and Plant Analysis, 49, 782–790. 10.1080/00103624.2018.1432639 DOI

Gustafsson, M. , Gustafsson, L. , Alloysius, D. , Falck, J. , Yap, S. , Karlsson, A. , & Ilstedt, U. (2016). Life history traits predict the response to increased light among 33 tropical rainforest tree species. Forest Ecology and Management, 362, 20–28. 10.1016/j.foreco.2015.11.017 DOI

Hédl, R. , Svátek, M. , Dančák, M. , Rodzay, A. W. , Salleh A.B., M. , & Kamariah, A. S. (2009). A new technique for inventory of permanent plots in tropical forests: A case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam. Blumea – Biodiversity, Evolution and Biogeography of Plants, 54, 124–130. 10.3767/000651909X475482 DOI

Heineman, K. D. , Turner, B. L. , & Dalling, J. W. (2016). Variation in wood nutrients along a tropical soil fertility gradient. New Phytologist, 211, 440–454. 10.1111/nph.13904 PubMed DOI

Hidaka, A. , & Kitayama, K. (2011). Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo. Journal of Ecology, 99, 849–857. 10.1111/j.1365-2745.2011.01805.x DOI

Hilton, R. G. , Galy, A. , West, A. J. , Hovius, N. , & Roberts, G. G. (2013). Geomorphic control on the delta 15 N of mountain forests. Biogeosciences, 10, 1693–1705. 10.5194/bg-10-1693-2013 DOI

Imai, N. , Kitayama, K. , & Titin, J. (2012). Effects of logging on phosphorus pools in a tropical rainforest of Borneo. Journal of Tropical Forest Science, 24, 5–17.

Jucker, T. , Bongalov, B. , Burslem, D. F. R. P. , Nilus, R. , Dalponte, M. , Lewis, S. L. , … Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21, 989–1000. 10.1111/ele.12964 PubMed DOI PMC

Khosravipour, A. , Skidmore, A. K. , Isenburg, M. , Wang, T. , & Hussin, Y. A. (2014). Generating pit‐free canopy height models from airborne lidar. Photogrammetric Engineering & Remote Sensing, 80, 863–872. 10.14358/PERS.80.9.863 DOI

Kitayama, K. (1992). An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio, 102, 149–171. 10.1007/BF00044731 DOI

Koerselman, W. , & Meuleman, A. F. M. (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. The Journal of Applied Ecology, 33, 1441 10.2307/2404783 DOI

Laclau, J. P. , Bouillet, J. P. , & Ranger, J. (2000). Dynamics of biomass and nutrient accumulation in a clonal plantation of Eucalyptus in Congo. Forest Ecology and Management, 128, 181–196. 10.1016/S0378-1127(99)00146-2 DOI

Laurance, W. F. , Sayer, J. , & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution, 29, 107–116. 10.1016/j.tree.2013.12.001 PubMed DOI

Li, D. , Gu, X. , Pang, Y. , Chen, B. , & Liu, L. (2018). Estimation of forest aboveground biomass and leaf area index based on digital aerial photograph data in Northeast China. Forests, 9, 275 10.3390/f9050275 DOI

Liu, X. , Burslem, D. F. R. P. , Taylor, J. D. , Taylor, A. F. S. , Khoo, E. , Majalap‐Lee, N. , … Johnson, D. (2018). Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecology Letters, 21, 713–723. 10.1111/ele.12939 PubMed DOI

Markewitz, D. , Davidson, E. , Moutinho, P. , & Nepstad, D. (2004). Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecological Applications, 14, 177–199. 10.1890/01-6016 DOI

Mayor, J. R. , Wright, S. J. , & Turner, B. L. (2014). Species‐specific responses of foliar nutrients to long‐term nitrogen and phosphorus additions in a lowland tropical forest. Journal of Ecology, 102, 36–44. 10.1111/1365-2745.12190 DOI

McGroddy, M. E. , Daufresne, T. , & Hedin, L. O. (2004). Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial redfield‐type ratios. Ecology, 85, 2390–2401. 10.1890/03-0351 DOI

Mevik, B.‐H. , & Wehrens, R. (2007). The pls package: Principal component and partial least squares regression in R. Journal of Statistical Software, 18, 1–23. 10.18637/jss.v018.i02 DOI

Nasto, M. K. , Alvarez‐Clare, S. , Lekberg, Y. , Sullivan, B. W. , Townsend, A. R. , & Cleveland, C. C. (2014). Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecology Letters, 17, 1282–1289. 10.1111/ele.12335 PubMed DOI

Nunes, M. H. , Davey, M. P. , & Coomes, D. A. (2017). On the challenges of using field spectroscopy to measure the impact of soil type on leaf traits. Biogeosciences, 14, 3371–3385. 10.5194/bg-14-3371-2017 DOI

Ollinger, S. V. , Smith, M. L. , Martin, M. E. , Hallett, R. A. , Goodale, C. L. , & Aber, J. D. (2002). Regional variation in foliar chemistry and N cycling among forests of diverse history and composition. Ecology, 83, 339 10.2307/2680018 DOI

Pendry, C. A. , & Proctor, J. (1997). Altitudinal zonation of rain forest on Bukit Belalong, Brunei: Soils, forest structure and floristics. Journal of Tropical Ecology, 13, 221–241. 10.1017/S0266467400010427 DOI

Pérez‐Harguindeguy, N. , Díaz, S. , Garnier, E. , Lavorel, S. , Poorter, H. , Jaureguiberry, P. , … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167 10.1071/BT12225 DOI

Poorter, L. , Bongers, F. , Aide, T. M. , Almeyda Zambrano, A. M. , Balvanera, P. , Becknell, J. M. , … Rozendaal, D. M. A. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530, 211–214. 10.1038/nature16512 PubMed DOI

Porder, S. , Vitousek, P. M. , Chadwick, O. A. , Chamberlain, C. P. , & Hilley, G. E. (2007). Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems, 10, 159–171. 10.1007/s10021-006-9011-x DOI

Primack, R. B. , & Lee, H. S. (1991). Population dynamics of pioneer (Macaranga) trees and understorey (Mallotus) trees (Euphorbiaceae) in primary and selectively logged Bornean rain forests. Journal of Tropical Ecology, 7, 439–457. 10.1017/s0266467400005836 DOI

Quinton, J. N. , Govers, G. , Van Oost, K. , & Bardgett, R. D. (2010). The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3, 311–314. 10.1038/ngeo838 DOI

Richardson, S. J. , Allen, R. B. , & Doherty, J. E. (2008). Shifts in leaf N:P ratio during resorption reflect soil P in temperate rainforest. Functional Ecology, 22, 738–745. 10.1111/j.1365-2435.2008.01426.x DOI

Riutta, T. , Malhi, Y. , Kho, L. K. , Marthews, T. R. , Huaraca Huasco, W. , Khoo, M. S. , … Ewers, R. M. (2018). Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Global Change Biology, 24(7), 2913–2928. 10.1111/gcb.14068 PubMed DOI

Rocha, A. D. , Groen, T. A. , Skidmore, A. K. , Darvishzadeh, R. , & Willemen, L. (2018). Machine learning using hyperspectral data inaccurately predicts plant traits under spatial dependency. Remote Sensing, 10 10.3390/rs10081263 DOI

Sayer, E. J. , & Tanner, E. V. J. (2010). Experimental investigation of the importance of litterfall in lowland semi‐evergreen tropical forest nutrient cycling. Journal of Ecology, 98, 1052–1062. 10.1111/j.1365-2745.2010.01680.x DOI

Schneider, F. D. , Morsdorf, F. , Schmid, B. , Petchey, O. L. , Hueni, A. , Schimel, D. S. , & Schaepman, M. E. (2017). Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nature Communications, 8, 1441 10.1038/s41467-017-01530-3 PubMed DOI PMC

Sharpley, A. N. (1985). The selection erosion of plant nutrients in runoff. Soil Science Society of America Journal, 49, 1527 10.2136/sssaj1985.03615995004900060039x DOI

Slik, J. W. F. (2005). Assessing tropical lowland forest disturbance using plant morphological and ecological attributes. Forest Ecology and Management, 205, 241–250. 10.1016/j.foreco.2004.10.011 DOI

Soethe, N. , Lehmann, J. , & Engels, C. (2008). Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology, 24, 397–406. 10.1017/S026646740800504X DOI

Steidinger, B. S. , Crowther, T. W. , Liang, J. , Van Nuland, M. E. , Werner, G. D. A. , Reich, P. B. , … Peay, K. G. (2019). Climatic controls of decomposition drive the global biogeography of forest‐tree symbioses. Nature, 569, 404–408. 10.1038/s41586-019-1128-0 PubMed DOI

Sterck, F. , Markesteijn, L. , Toledo, M. , Schieving, F. , & Poorter, L. (2014). Sapling performance along resource gradients drives tree species distributions within and across tropical forests. Ecology, 95, 2514–2525. 10.1890/13-2377.1 DOI

Tanner, E. V. J. , Vitousek, P. M. , & Cuevas, E. (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology, 79, 10–22. 10.1890/0012-9658(1998)079[0010:EIONLO]2.0.CO;2 DOI

Teh, Y. A. , Silver, W. L. , & Scatena, F. N. (2009). A decade of belowground reorganization following multiple disturbances in a subtropical wet forest. Plant and Soil, 323, 197–212. 10.1007/s11104-009-9926-z DOI

Turner, B. L. , Brenes‐Arguedas, T. , & Condit, R. (2018). Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature, 555(7696), 367–370. 10.1038/nature25789 PubMed DOI

Verburg, R. , & van Eijk‐Bos, C. (2003). Effects of selective logging on tree diversity, composition and plant functional type patterns in a Bornean rain forest. Journal of Vegetation Science, 14, 99–110. 10.1111/j.1654-1103.2003.tb02132.x DOI

Vitousek, P. M. (1984). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285–298. 10.2307/1939481 DOI

Walker, T. W. , & Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma, 15, 1–19. 10.1016/0016-7061(76)90066-5 DOI

Werner, F. A. , & Homeier, J. (2015). Is tropical montane forest heterogeneity promoted by a resource‐driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Functional Ecology, 29, 430–440. 10.1111/1365-2435.12351 DOI

Wright, I. J. , Reich, P. B. , Westoby, M. , Ackerly, D. D. , Baruch, Z. , Bongers, F. , … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. 10.1038/nature02403 PubMed DOI

Zalamea, P.‐C. , Turner, B. L. , Winter, K. , Jones, F. A. , Sarmiento, C. , & Dalling, J. W. (2016). Seedling growth responses to phosphorus reflect adult distribution patterns of tropical trees. New Phytologist, 212, 400–408. 10.1111/nph.14045 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...