Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33750781
PubMed Central
PMC7943823
DOI
10.1038/s41467-020-20811-y
PII: 10.1038/s41467-020-20811-y
Knihovny.cz E-resources
- MeSH
- Arecaceae MeSH
- Rainforest MeSH
- Ecology MeSH
- El Nino-Southern Oscillation adverse effects MeSH
- Climate Change MeSH
- Forests * MeSH
- Humans MeSH
- Plant Leaves MeSH
- Droughts MeSH
- Trees * MeSH
- Tropical Climate * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Borneo MeSH
- Asia, Southeastern MeSH
- Malaysia MeSH
The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent.
Department of Geosciences and Geography University of Helsinki Helsinki 00014 Finland
Sabah Forestry Department Sandakan 90009 Malaysia
School of Biological Sciences University of Bristol Bristol BS8 1TH UK
School of Natural Sciences Bangor University Gwynedd LL57 2UW UK
See more in PubMed
Le Quéré C, et al. Global Carbon Budget 2018. Earth Syst. Sci. Data. 2018;10:2141–2194. doi: 10.5194/essd-10-2141-2018. DOI
Cook-Patton SC, et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature. 2020;585:545–550. doi: 10.1038/s41586-020-2686-x. PubMed DOI
Houghton RA, Byers B, Nassikas AA. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Chang. 2015;5:1022–1023. doi: 10.1038/nclimate2869. DOI
Chazdon RL, et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2016;2:e1501639. doi: 10.1126/sciadv.1501639. PubMed DOI PMC
Philipson CD, et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science. 2020;369:838–841. doi: 10.1126/science.aay4490. PubMed DOI
Taubert F, et al. Global patterns of tropical forest fragmentation. Nature. 2018;554:519–522. doi: 10.1038/nature25508. PubMed DOI
Tabarelli M, Lopes AV, Peres CA. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica. 2008;40:657–661. doi: 10.1111/j.1744-7429.2008.00454.x. DOI
Arroyo-Rodríguez V, et al. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. Camb. Philos. Soc. 2017;92:326–340. doi: 10.1111/brv.12231. PubMed DOI
Collins CD, et al. Fragmentation affects plant community composition over time. Ecography. 2017;40:119–130. doi: 10.1111/ecog.02607. DOI
Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv.6 eaax8574 (2020). PubMed PMC
Qie L, et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 2017;8:1966. doi: 10.1038/s41467-017-01997-0. PubMed DOI PMC
Thirumalai K, DiNezio PN, Okumura Y, Deser C. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun. 2017;8:15531. doi: 10.1038/ncomms15531. PubMed DOI PMC
Cai W, et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature. 2018;564:201–206. doi: 10.1038/s41586-018-0776-9. PubMed DOI
Vogel MM, Hauser M, Seneviratne SI. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 2020;15:094021. doi: 10.1088/1748-9326/ab90a7. DOI
McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. N. Phytol.10.1111/nph.15027@10.1111/(ISSN)1469-8137.DroughtImpactsonTropicalForests (2018). PubMed
Walker AP, et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 2019;10:454. doi: 10.1038/s41467-019-08348-1. PubMed DOI PMC
Riutta T, et al. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Glob. Chang. Biol. 2018;24:2913–2928. doi: 10.1111/gcb.14068. PubMed DOI
Both S, et al. Logging and soil nutrients independently explain plant trait expression in tropical forests. N. Phytol. 2019;221:1853–1865. doi: 10.1111/nph.15444. PubMed DOI
Swinfield T, et al. Imaging spectroscopy reveals the effects of topography and logging on the leaf chemistry of tropical forest canopy trees. Glob. Chang. Biol. 2020;26:989–1002. doi: 10.1111/gcb.14903. PubMed DOI PMC
Jotan P, Maycock CR, Burslem D, Berhaman A, Both S. Comparative vessel traits of macaranga gigantea and vatica dulitensis from Malaysian B. J. Trop. Sci. 2020;32:25–34.
Uriarte M, et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica. 2016;48:780–797. doi: 10.1111/btp.12380. DOI
Park Williams A, et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013;3:292–297. doi: 10.1038/nclimate1693. DOI
Wolfe BT, Sperry JS, Kursar TA. Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis. N. Phytol. 2016;212:1007–1018. doi: 10.1111/nph.14087. PubMed DOI
Slik JWF. El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia. 2004;141:114–120. doi: 10.1007/s00442-004-1635-y. PubMed DOI
Jucker T, et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 2018;21:989–1000. doi: 10.1111/ele.12964. PubMed DOI PMC
Itoh A, et al. Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecol. Res. 2003;18:307–320. doi: 10.1046/j.1440-1703.2003.00556.x. DOI
Stovall AEL, Shugart HH, Yang X. Reply to ‘Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought’. Nat. Commun. 2020;11:3401. doi: 10.1038/s41467-020-17214-4. PubMed DOI PMC
Maréchaux I, et al. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Funct. Ecol. 2015;29:1268–1277. doi: 10.1111/1365-2435.12452. DOI
Cosme LHM, Schietti J, Costa FRC, Oliveira RS. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. N. Phytol. 2017;215:113–125. doi: 10.1111/nph.14508. PubMed DOI
Bittencourt, P. R. L. et al. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. Glob. Chang. Biol.10.1111/gcb.15040 (2020). PubMed
Luke SH, et al. Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy. J. Appl. Ecol. 2019;56:85–92. doi: 10.1111/1365-2664.13280. DOI
Padfield, R. et al. Co-Producing a Research Agenda for Sustainable Palm Oil. 10.3389/ffgc.2019.00013 (2019).
Zhao K, et al. Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sens. Environ. 2018;204:883–897. doi: 10.1016/j.rse.2017.09.007. DOI
Simonson W, Ruiz-Benito P, Valladares F, Coomes D. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland. Biogeosciences. 2016;13:961–973. doi: 10.5194/bg-13-961-2016. DOI
Leitold V, et al. El Niño drought increased canopy turnover in Amazon forests. N. Phytol. 2018;219:959–971. doi: 10.1111/nph.15110. PubMed DOI
Moura YMde, et al. Carbon dynamics in a human-modified tropical forest: a case study using multi-temporal LiDAR data. Remote Sens. 2020;12:430. doi: 10.3390/rs12030430. DOI
Simonson W, Allen H, Coomes D. Effect of tree phenology on LiDAR measurement of mediterranean forest structure. Remote Sens. 2018;10:659. doi: 10.3390/rs10050659. DOI
Sullivan MJP, et al. Long-term thermal sensitivity of Earth’s tropical forests. Science. 2020;368:869–874. doi: 10.1126/science.aaw7578. PubMed DOI
Coomes DA, et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens. Environ. 2017;194:77–88. doi: 10.1016/j.rse.2017.03.017. DOI
Asner GP, et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 2018;217:289–310. doi: 10.1016/j.biocon.2017.10.020. DOI
Burton C, Rifai S, Malhi Y. Inter-comparison and assessment of gridded climate products over tropical forests during the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences. 2018;373:1760. doi: 10.1098/rstb.2017.0406. PubMed DOI PMC
Ordway EM, Asner GP. Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proc. Natl Acad. Sci. USA. 2020;117:7863–7870. doi: 10.1073/pnas.1914420117. PubMed DOI PMC
Phillips OL, et al. Drought sensitivity of the Amazon rainforest. Science. 2009;323:1344–1347. doi: 10.1126/science.1164033. PubMed DOI
Sevanto S. Phloem transport and drought. J. Exp. Bot. 2014;65:1751–1759. doi: 10.1093/jxb/ert467. PubMed DOI
Aleixo I, et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. 2019;9:384–388. doi: 10.1038/s41558-019-0458-0. DOI
Woodgate W, et al. Quantifying the impact of woody material on leaf area index estimation from hemispherical photography using 3D canopy simulations. Agric. Meteorol. 2016;226-227:1–12. doi: 10.1016/j.agrformet.2016.05.009. DOI
Nunes MH, et al. Changes in leaf functional traits of rainforest canopy trees associated with an El Niño event in Borneo. Environ. Res. Lett. 2019;14:085005. doi: 10.1088/1748-9326/ab2eae. DOI
Tang H, Dubayah R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl Acad. Sci. USA. 2017;114:2640–2644. doi: 10.1073/pnas.1616943114. PubMed DOI PMC
Doughty CE, et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature. 2015;519:78–82. doi: 10.1038/nature14213. PubMed DOI
Marvin DC, Asner GP. Branchfall dominates annual carbon flux across lowland Amazonian forests. Environ. Res. Lett. 2016;11:094027. doi: 10.1088/1748-9326/11/9/094027. DOI
Roussel J-R, Caspersen J, Béland M, Thomas S, Achim A. Removing bias from LiDAR-based estimates of canopy height: accounting for the effects of pulse density and footprint size. Remote Sens. Environ. 2017;198:1–16. doi: 10.1016/j.rse.2017.05.032. DOI
Sist P, Nguyen-Thé N. Logging damage and the subsequent dynamics of a dipterocarp forest in East Kalimantan (1990–1996) . Ecol. Manag. 2002;165:85–103. doi: 10.1016/S0378-1127(01)00649-1. DOI
Rutishauser E, et al. Rapid tree carbon stock recovery in managed Amazonian forests. Curr. Biol. 2015;25:R787–R788. doi: 10.1016/j.cub.2015.07.034. PubMed DOI
Giambelluca TW, Ziegler AD, Nullet MA, Truong DM, Tran LT. Transpiration in a small tropical forest patch. Agric. Meteorol. 2003;117:1–22. doi: 10.1016/S0168-1923(03)00041-8. DOI
Ewers RM, Banks-Leite C. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS ONE. 2013;8:e58093. doi: 10.1371/journal.pone.0058093. PubMed DOI PMC
Laurance WF, Curran TJ. Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral. Ecol. 2008;33:399–408. doi: 10.1111/j.1442-9993.2008.01895.x. DOI
Jucker T, et al. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Chang. Biol. 2018;24:5243–5258. doi: 10.1111/gcb.14415. PubMed DOI
Laurance WF. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 2008;141:1731–1744. doi: 10.1016/j.biocon.2008.05.011. DOI
Muscarella R, Kolyaie S, Morton DC, Zimmerman JK, Uriarte M. Effects of topography on tropical forest structure depend on climate context. J. Ecol. 2020;108:145–159. doi: 10.1111/1365-2745.13261. DOI
Werner FA, Homeier J. Is tropical montane forest heterogeneity promoted by a resource‐driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Funct. Ecol. 2015;29:430–440. doi: 10.1111/1365-2435.12351. DOI
Gonzalez‐Akre E, et al. Patterns of tree mortality in a temperate deciduous forest derived from a large forest dynamics plot. Ecosphere. 2016;7:G04014. doi: 10.1002/ecs2.1595. DOI
Hansen MC, et al. High-resolution global maps of 21st-century forest cover change. Science. 2013;342:850–853. doi: 10.1126/science.1244693. PubMed DOI
Williamson, J. et al. Riparian Buffers Act as Microclimatic Refugia in Oil Palm Landscapes. 10.17863/CAM.57796 (2020).
Hurst MD, Mudd SM, Walcott R, Attal M, Yoo K. Using hilltop curvature to derive the spatial distribution of erosion rates: hilltop curvature predicts erosion rates. J. Geophys. Res. 2012;117:F2.
Gaveau DLA, et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 2016;6:32017. doi: 10.1038/srep32017. PubMed DOI PMC
Ewers RM, et al. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011;366:3292–3302. doi: 10.1098/rstb.2011.0049. PubMed DOI PMC
Pfeifer M, et al. Mapping the structure of Borneo’s tropical forests across a degradation gradient. Remote Sens. Environ. 2016;176:84–97. doi: 10.1016/j.rse.2016.01.014. DOI
Reynolds G, Payne J, Sinun W, Mosigil G, Walsh RPD. Changes in forest land use and management in Sabah, Malaysian Borneo, 1990-2010, with a focus on the Danum Valley region. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011;366:3168–3176. doi: 10.1098/rstb.2011.0154. PubMed DOI PMC
Clarke, A. Principles of thermal ecology: temperature, energy, and life. Oxford Scholarship Online10.1093/oso/9780199551668.001.0001 (2017).
Bolton D. The computation of equivalent potential temperature. Mon. Weather Rev. 1980;108:1046–1053. doi: 10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2. DOI
Asner GP, et al. Carnegie airborne observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens. Environ. 2012;124:454–465. doi: 10.1016/j.rse.2012.06.012. DOI
Jucker T, et al. Estimating aboveground carbon density and its uncertainty in Borneo’s structurally complex tropical forests using airborne laser scanning. Biogeosciences. 2018;15:3811–3830. doi: 10.5194/bg-15-3811-2018. DOI
Khosravipour A, Skidmore AK, Isenburg M, Wang T, Hussin YA. Generating pit-free canopy height models from airborne lidar. Photogramm. Eng. Remote Sens. 2014;80:863–872. doi: 10.14358/PERS.80.9.863. DOI
Asner GP, Mascaro J. Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric. Remote Sens. Environ. 2014;140:614–624. doi: 10.1016/j.rse.2013.09.023. DOI
Pearson TRH, Brown S, Casarim FM. Carbon emissions from tropical forest degradation caused by logging. Environ. Res. Lett. 2014;9:034017. doi: 10.1088/1748-9326/9/3/034017. DOI
Gobakken, T. G. & Næsset, E. N. Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Can. J. For. Res.10.1139/X07-219 (2008).
Gray CL, Slade EM, Mann DJ, Lewis OT. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes? Ecol. Evol. 2014;4:1049–1060. doi: 10.1002/ece3.1003. PubMed DOI PMC
Metcalfe P, Beven K, Freer J. Dynamic TOPMODEL: a new implementation in R and its sensitivity to time and space steps. Environ. Model. Softw. 2015;72:155–172. doi: 10.1016/j.envsoft.2015.06.010. DOI
Condit R, et al. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño Dry Season. J. Trop. Ecol. 2004;20:51–72. doi: 10.1017/S0266467403001081. DOI
H’edl R, et al. A new technique for inventory of permanent plots in tropical forests: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam. Blumea J. Biodivers. Evolut. Biogeogr. Plants. 2009;54:124–130. doi: 10.3767/000651909X475482. DOI
Kent R, Lindsell JA, Laurin GV, Valentini R, Coomes DA. Airborne LiDAR detects selectively logged tropical forest even in an advanced stage of recovery. Remote Sens. 2015;7:8348–8367. doi: 10.3390/rs70708348. DOI
Gonsamo A, Walter J-MN, Pellikka P. Sampling gap fraction and size for estimating leaf area and clumping indices from hemispherical photographs. Can. J. Res. 2010;40:1588–1603. doi: 10.1139/X10-085. DOI
Kalacska MER, Sanchez-Azofeifa GA, Calvo-Alvarado JC, Rivard B, Quesada M. Effects of season and successional stage on leaf area index and spectral vegetation indices in three mesoamerican tropical dry forests1. Biotropica. 2005;37:486–496. doi: 10.1111/j.1744-7429.2005.00067.x. DOI
Thimonier A, Sedivy I, Schleppi P. Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. Eur. J. Res. 2010;129:543–562. doi: 10.1007/s10342-009-0353-8. DOI
Chen JM, Cihlar J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. IEEE Trans. Geosci. Remote Sens. 1995;33:777–787. doi: 10.1109/36.387593. DOI
Schleppi P, Conedera M, Sedivy I, Thimonier A. Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agric. Meteorol. 2007;144:236–242. doi: 10.1016/j.agrformet.2007.02.004. DOI
Harmon ME, Whigham DF, Sexton J, Olmsted I. Decomposition and mass of woody detritus in the dry tropical forests of the Northeastern Yucatan Peninsula, Mexico. Biotropica. 1995;27:305–316. doi: 10.2307/2388916. DOI
Team, R. C. R: A Language and Environment for Statistical Computing. (Foundation for Statistical Computing, Vienna, Austria. 2017). Available online: www.r-project.org (accessed 14 Febuary 2019) (2018).
Ploton P, et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020;11:4540. doi: 10.1038/s41467-020-18321-y. PubMed DOI PMC
Wedeux, B. et al. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys. Glob. Chang. Biol.10.1111/gcb.15108 (2020). PubMed