• This record comes from PubMed

Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño

. 2021 Mar 09 ; 12 (1) : 1526. [epub] 20210309

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 33750781
PubMed Central PMC7943823
DOI 10.1038/s41467-020-20811-y
PII: 10.1038/s41467-020-20811-y
Knihovny.cz E-resources

The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent.

See more in PubMed

Le Quéré C, et al. Global Carbon Budget 2018. Earth Syst. Sci. Data. 2018;10:2141–2194. doi: 10.5194/essd-10-2141-2018. DOI

Cook-Patton SC, et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature. 2020;585:545–550. doi: 10.1038/s41586-020-2686-x. PubMed DOI

Houghton RA, Byers B, Nassikas AA. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Chang. 2015;5:1022–1023. doi: 10.1038/nclimate2869. DOI

Chazdon RL, et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2016;2:e1501639. doi: 10.1126/sciadv.1501639. PubMed DOI PMC

Philipson CD, et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science. 2020;369:838–841. doi: 10.1126/science.aay4490. PubMed DOI

Taubert F, et al. Global patterns of tropical forest fragmentation. Nature. 2018;554:519–522. doi: 10.1038/nature25508. PubMed DOI

Tabarelli M, Lopes AV, Peres CA. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica. 2008;40:657–661. doi: 10.1111/j.1744-7429.2008.00454.x. DOI

Arroyo-Rodríguez V, et al. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. Camb. Philos. Soc. 2017;92:326–340. doi: 10.1111/brv.12231. PubMed DOI

Collins CD, et al. Fragmentation affects plant community composition over time. Ecography. 2017;40:119–130. doi: 10.1111/ecog.02607. DOI

Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv.6 eaax8574 (2020). PubMed PMC

Qie L, et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 2017;8:1966. doi: 10.1038/s41467-017-01997-0. PubMed DOI PMC

Thirumalai K, DiNezio PN, Okumura Y, Deser C. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun. 2017;8:15531. doi: 10.1038/ncomms15531. PubMed DOI PMC

Cai W, et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature. 2018;564:201–206. doi: 10.1038/s41586-018-0776-9. PubMed DOI

Vogel MM, Hauser M, Seneviratne SI. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 2020;15:094021. doi: 10.1088/1748-9326/ab90a7. DOI

McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. N. Phytol.10.1111/nph.15027@10.1111/(ISSN)1469-8137.DroughtImpactsonTropicalForests (2018). PubMed

Walker AP, et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 2019;10:454. doi: 10.1038/s41467-019-08348-1. PubMed DOI PMC

Riutta T, et al. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Glob. Chang. Biol. 2018;24:2913–2928. doi: 10.1111/gcb.14068. PubMed DOI

Both S, et al. Logging and soil nutrients independently explain plant trait expression in tropical forests. N. Phytol. 2019;221:1853–1865. doi: 10.1111/nph.15444. PubMed DOI

Swinfield T, et al. Imaging spectroscopy reveals the effects of topography and logging on the leaf chemistry of tropical forest canopy trees. Glob. Chang. Biol. 2020;26:989–1002. doi: 10.1111/gcb.14903. PubMed DOI PMC

Jotan P, Maycock CR, Burslem D, Berhaman A, Both S. Comparative vessel traits of macaranga gigantea and vatica dulitensis from Malaysian B. J. Trop. Sci. 2020;32:25–34.

Uriarte M, et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica. 2016;48:780–797. doi: 10.1111/btp.12380. DOI

Park Williams A, et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013;3:292–297. doi: 10.1038/nclimate1693. DOI

Wolfe BT, Sperry JS, Kursar TA. Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis. N. Phytol. 2016;212:1007–1018. doi: 10.1111/nph.14087. PubMed DOI

Slik JWF. El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia. 2004;141:114–120. doi: 10.1007/s00442-004-1635-y. PubMed DOI

Jucker T, et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 2018;21:989–1000. doi: 10.1111/ele.12964. PubMed DOI PMC

Itoh A, et al. Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecol. Res. 2003;18:307–320. doi: 10.1046/j.1440-1703.2003.00556.x. DOI

Stovall AEL, Shugart HH, Yang X. Reply to ‘Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought’. Nat. Commun. 2020;11:3401. doi: 10.1038/s41467-020-17214-4. PubMed DOI PMC

Maréchaux I, et al. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Funct. Ecol. 2015;29:1268–1277. doi: 10.1111/1365-2435.12452. DOI

Cosme LHM, Schietti J, Costa FRC, Oliveira RS. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. N. Phytol. 2017;215:113–125. doi: 10.1111/nph.14508. PubMed DOI

Bittencourt, P. R. L. et al. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. Glob. Chang. Biol.10.1111/gcb.15040 (2020). PubMed

Luke SH, et al. Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy. J. Appl. Ecol. 2019;56:85–92. doi: 10.1111/1365-2664.13280. DOI

Padfield, R. et al. Co-Producing a Research Agenda for Sustainable Palm Oil. 10.3389/ffgc.2019.00013 (2019).

Zhao K, et al. Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sens. Environ. 2018;204:883–897. doi: 10.1016/j.rse.2017.09.007. DOI

Simonson W, Ruiz-Benito P, Valladares F, Coomes D. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland. Biogeosciences. 2016;13:961–973. doi: 10.5194/bg-13-961-2016. DOI

Leitold V, et al. El Niño drought increased canopy turnover in Amazon forests. N. Phytol. 2018;219:959–971. doi: 10.1111/nph.15110. PubMed DOI

Moura YMde, et al. Carbon dynamics in a human-modified tropical forest: a case study using multi-temporal LiDAR data. Remote Sens. 2020;12:430. doi: 10.3390/rs12030430. DOI

Simonson W, Allen H, Coomes D. Effect of tree phenology on LiDAR measurement of mediterranean forest structure. Remote Sens. 2018;10:659. doi: 10.3390/rs10050659. DOI

Sullivan MJP, et al. Long-term thermal sensitivity of Earth’s tropical forests. Science. 2020;368:869–874. doi: 10.1126/science.aaw7578. PubMed DOI

Coomes DA, et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens. Environ. 2017;194:77–88. doi: 10.1016/j.rse.2017.03.017. DOI

Asner GP, et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 2018;217:289–310. doi: 10.1016/j.biocon.2017.10.020. DOI

Burton C, Rifai S, Malhi Y. Inter-comparison and assessment of gridded climate products over tropical forests during the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences. 2018;373:1760. doi: 10.1098/rstb.2017.0406. PubMed DOI PMC

Ordway EM, Asner GP. Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proc. Natl Acad. Sci. USA. 2020;117:7863–7870. doi: 10.1073/pnas.1914420117. PubMed DOI PMC

Phillips OL, et al. Drought sensitivity of the Amazon rainforest. Science. 2009;323:1344–1347. doi: 10.1126/science.1164033. PubMed DOI

Sevanto S. Phloem transport and drought. J. Exp. Bot. 2014;65:1751–1759. doi: 10.1093/jxb/ert467. PubMed DOI

Aleixo I, et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. 2019;9:384–388. doi: 10.1038/s41558-019-0458-0. DOI

Woodgate W, et al. Quantifying the impact of woody material on leaf area index estimation from hemispherical photography using 3D canopy simulations. Agric. Meteorol. 2016;226-227:1–12. doi: 10.1016/j.agrformet.2016.05.009. DOI

Nunes MH, et al. Changes in leaf functional traits of rainforest canopy trees associated with an El Niño event in Borneo. Environ. Res. Lett. 2019;14:085005. doi: 10.1088/1748-9326/ab2eae. DOI

Tang H, Dubayah R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl Acad. Sci. USA. 2017;114:2640–2644. doi: 10.1073/pnas.1616943114. PubMed DOI PMC

Doughty CE, et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature. 2015;519:78–82. doi: 10.1038/nature14213. PubMed DOI

Marvin DC, Asner GP. Branchfall dominates annual carbon flux across lowland Amazonian forests. Environ. Res. Lett. 2016;11:094027. doi: 10.1088/1748-9326/11/9/094027. DOI

Roussel J-R, Caspersen J, Béland M, Thomas S, Achim A. Removing bias from LiDAR-based estimates of canopy height: accounting for the effects of pulse density and footprint size. Remote Sens. Environ. 2017;198:1–16. doi: 10.1016/j.rse.2017.05.032. DOI

Sist P, Nguyen-Thé N. Logging damage and the subsequent dynamics of a dipterocarp forest in East Kalimantan (1990–1996) . Ecol. Manag. 2002;165:85–103. doi: 10.1016/S0378-1127(01)00649-1. DOI

Rutishauser E, et al. Rapid tree carbon stock recovery in managed Amazonian forests. Curr. Biol. 2015;25:R787–R788. doi: 10.1016/j.cub.2015.07.034. PubMed DOI

Giambelluca TW, Ziegler AD, Nullet MA, Truong DM, Tran LT. Transpiration in a small tropical forest patch. Agric. Meteorol. 2003;117:1–22. doi: 10.1016/S0168-1923(03)00041-8. DOI

Ewers RM, Banks-Leite C. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS ONE. 2013;8:e58093. doi: 10.1371/journal.pone.0058093. PubMed DOI PMC

Laurance WF, Curran TJ. Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral. Ecol. 2008;33:399–408. doi: 10.1111/j.1442-9993.2008.01895.x. DOI

Jucker T, et al. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Chang. Biol. 2018;24:5243–5258. doi: 10.1111/gcb.14415. PubMed DOI

Laurance WF. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 2008;141:1731–1744. doi: 10.1016/j.biocon.2008.05.011. DOI

Muscarella R, Kolyaie S, Morton DC, Zimmerman JK, Uriarte M. Effects of topography on tropical forest structure depend on climate context. J. Ecol. 2020;108:145–159. doi: 10.1111/1365-2745.13261. DOI

Werner FA, Homeier J. Is tropical montane forest heterogeneity promoted by a resource‐driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Funct. Ecol. 2015;29:430–440. doi: 10.1111/1365-2435.12351. DOI

Gonzalez‐Akre E, et al. Patterns of tree mortality in a temperate deciduous forest derived from a large forest dynamics plot. Ecosphere. 2016;7:G04014. doi: 10.1002/ecs2.1595. DOI

Hansen MC, et al. High-resolution global maps of 21st-century forest cover change. Science. 2013;342:850–853. doi: 10.1126/science.1244693. PubMed DOI

Williamson, J. et al. Riparian Buffers Act as Microclimatic Refugia in Oil Palm Landscapes. 10.17863/CAM.57796 (2020).

Hurst MD, Mudd SM, Walcott R, Attal M, Yoo K. Using hilltop curvature to derive the spatial distribution of erosion rates: hilltop curvature predicts erosion rates. J. Geophys. Res. 2012;117:F2.

Gaveau DLA, et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 2016;6:32017. doi: 10.1038/srep32017. PubMed DOI PMC

Ewers RM, et al. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011;366:3292–3302. doi: 10.1098/rstb.2011.0049. PubMed DOI PMC

Pfeifer M, et al. Mapping the structure of Borneo’s tropical forests across a degradation gradient. Remote Sens. Environ. 2016;176:84–97. doi: 10.1016/j.rse.2016.01.014. DOI

Reynolds G, Payne J, Sinun W, Mosigil G, Walsh RPD. Changes in forest land use and management in Sabah, Malaysian Borneo, 1990-2010, with a focus on the Danum Valley region. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011;366:3168–3176. doi: 10.1098/rstb.2011.0154. PubMed DOI PMC

Clarke, A. Principles of thermal ecology: temperature, energy, and life. Oxford Scholarship Online10.1093/oso/9780199551668.001.0001 (2017).

Bolton D. The computation of equivalent potential temperature. Mon. Weather Rev. 1980;108:1046–1053. doi: 10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2. DOI

Asner GP, et al. Carnegie airborne observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens. Environ. 2012;124:454–465. doi: 10.1016/j.rse.2012.06.012. DOI

Jucker T, et al. Estimating aboveground carbon density and its uncertainty in Borneo’s structurally complex tropical forests using airborne laser scanning. Biogeosciences. 2018;15:3811–3830. doi: 10.5194/bg-15-3811-2018. DOI

Khosravipour A, Skidmore AK, Isenburg M, Wang T, Hussin YA. Generating pit-free canopy height models from airborne lidar. Photogramm. Eng. Remote Sens. 2014;80:863–872. doi: 10.14358/PERS.80.9.863. DOI

Asner GP, Mascaro J. Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric. Remote Sens. Environ. 2014;140:614–624. doi: 10.1016/j.rse.2013.09.023. DOI

Pearson TRH, Brown S, Casarim FM. Carbon emissions from tropical forest degradation caused by logging. Environ. Res. Lett. 2014;9:034017. doi: 10.1088/1748-9326/9/3/034017. DOI

Gobakken, T. G. & Næsset, E. N. Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Can. J. For. Res.10.1139/X07-219 (2008).

Gray CL, Slade EM, Mann DJ, Lewis OT. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes? Ecol. Evol. 2014;4:1049–1060. doi: 10.1002/ece3.1003. PubMed DOI PMC

Metcalfe P, Beven K, Freer J. Dynamic TOPMODEL: a new implementation in R and its sensitivity to time and space steps. Environ. Model. Softw. 2015;72:155–172. doi: 10.1016/j.envsoft.2015.06.010. DOI

Condit R, et al. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño Dry Season. J. Trop. Ecol. 2004;20:51–72. doi: 10.1017/S0266467403001081. DOI

H’edl R, et al. A new technique for inventory of permanent plots in tropical forests: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam. Blumea J. Biodivers. Evolut. Biogeogr. Plants. 2009;54:124–130. doi: 10.3767/000651909X475482. DOI

Kent R, Lindsell JA, Laurin GV, Valentini R, Coomes DA. Airborne LiDAR detects selectively logged tropical forest even in an advanced stage of recovery. Remote Sens. 2015;7:8348–8367. doi: 10.3390/rs70708348. DOI

Gonsamo A, Walter J-MN, Pellikka P. Sampling gap fraction and size for estimating leaf area and clumping indices from hemispherical photographs. Can. J. Res. 2010;40:1588–1603. doi: 10.1139/X10-085. DOI

Kalacska MER, Sanchez-Azofeifa GA, Calvo-Alvarado JC, Rivard B, Quesada M. Effects of season and successional stage on leaf area index and spectral vegetation indices in three mesoamerican tropical dry forests1. Biotropica. 2005;37:486–496. doi: 10.1111/j.1744-7429.2005.00067.x. DOI

Thimonier A, Sedivy I, Schleppi P. Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. Eur. J. Res. 2010;129:543–562. doi: 10.1007/s10342-009-0353-8. DOI

Chen JM, Cihlar J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. IEEE Trans. Geosci. Remote Sens. 1995;33:777–787. doi: 10.1109/36.387593. DOI

Schleppi P, Conedera M, Sedivy I, Thimonier A. Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agric. Meteorol. 2007;144:236–242. doi: 10.1016/j.agrformet.2007.02.004. DOI

Harmon ME, Whigham DF, Sexton J, Olmsted I. Decomposition and mass of woody detritus in the dry tropical forests of the Northeastern Yucatan Peninsula, Mexico. Biotropica. 1995;27:305–316. doi: 10.2307/2388916. DOI

Team, R. C. R: A Language and Environment for Statistical Computing. (Foundation for Statistical Computing, Vienna, Austria. 2017). Available online: www.r-project.org (accessed 14 Febuary 2019) (2018).

Ploton P, et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020;11:4540. doi: 10.1038/s41467-020-18321-y. PubMed DOI PMC

Wedeux, B. et al. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys. Glob. Chang. Biol.10.1111/gcb.15108 (2020). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...